handle_rov.sh 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233
  1. #!/bin/sh
  2. set -x
  3. source /root/anaconda3/bin/activate py37
  4. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  5. export PATH=$SPARK_HOME/bin:$PATH
  6. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  7. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  8. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  9. # 原始数据table name
  10. table='alg_recsys_sample_all'
  11. today="$(date +%Y%m%d)"
  12. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  13. #table='alg_recsys_sample_all_test'
  14. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  15. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  16. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  17. beginHhStr=00
  18. endHhStr=23
  19. max_hour=05
  20. max_minute=00
  21. # 各节点产出hdfs文件绝对路径
  22. # 源数据文件
  23. originDataPath=/dw/recommend/model/41_recsys_sample_data/
  24. # 特征值
  25. valueDataPath=/dw/recommend/model/14_feature_data/
  26. # 特征分桶
  27. bucketDataPath=/dw/recommend/model/43_recsys_train_data/
  28. # 模型数据路径
  29. MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
  30. # 预测路径
  31. PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
  32. # 历史线上正在使用的模型数据路径
  33. LAST_MODEL_HOME=/root/joe/model_online
  34. # 模型数据文件前缀
  35. model_name=model_nba8
  36. # fm模型
  37. FM_HOME=/root/sunmingze/alphaFM/bin
  38. # hadoop
  39. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  40. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  41. #OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/qiaojialiang/
  42. # 0 判断上游表是否生产完成,最长等待到max_hour点
  43. # shellcheck disable=SC2154
  44. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
  45. while true; do
  46. python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
  47. echo "python 返回值:${python_return_code}"
  48. if [ $python_return_code -eq 0 ]; then
  49. echo "Python程序返回0,校验存在数据,退出循环。"
  50. break
  51. fi
  52. echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
  53. sleep 300
  54. current_hour=$(date +%H)
  55. current_minute=$(date +%M)
  56. # shellcheck disable=SC2039
  57. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  58. echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  59. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step0校验是否生产完数据\n【是否成功】:error\n【信息】:最长等待时间已到,失败:${current_hour}-${current_minute}"
  60. exit 1
  61. fi
  62. done
  63. # 1 生产原始数据
  64. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始根据${table}生产原始数据"
  65. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  66. #--class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
  67. #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  68. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  69. #tablePart:64 repartition:32 \
  70. #beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
  71. #savePath:${originDataPath} \
  72. #table:${table}
  73. #if [ $? -ne 0 ]; then
  74. # echo "Spark原始样本生产任务执行失败"
  75. # /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step1根据${table}生产原始数据\n【是否成功】:error\n【信息】:Spark原始样本生产任务执行失败"
  76. # exit 1
  77. #else
  78. # echo "spark原始样本生产执行成功"
  79. #fi
  80. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  81. --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
  82. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  83. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  84. tablePart:64 repartition:32 \
  85. beginStr:${begin_early_2_Str}00 endStr:${end_early_2_Str}10 \
  86. savePath:${originDataPath} \
  87. table:${table} &
  88. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  89. --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
  90. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  91. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  92. tablePart:64 repartition:32 \
  93. beginStr:${begin_early_2_Str}11 endStr:${end_early_2_Str}16 \
  94. savePath:${originDataPath} \
  95. table:${table} &
  96. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  97. --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \
  98. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  99. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  100. tablePart:64 repartition:32 \
  101. beginStr:${begin_early_2_Str}17 endStr:${end_early_2_Str}23 \
  102. savePath:${originDataPath} \
  103. table:${table} &
  104. wait
  105. if [ $? -ne 0 ]; then
  106. echo "Spark原始样本生产任务执行失败"
  107. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step1根据${table}生产原始数据\n【是否成功】:error\n【信息】:Spark原始样本生产任务执行失败"
  108. exit 1
  109. else
  110. echo "spark原始样本生产执行成功"
  111. fi
  112. # 2 特征分桶
  113. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------根据特征分桶生产重打分特征数据"
  114. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  115. --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_43_bucketData_20240709 \
  116. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  117. ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  118. readPath:${originDataPath} \
  119. savePath:${bucketDataPath} \
  120. beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:500 \
  121. filterNames:XXXXXXXXX \
  122. fileName:20240609_bucket_314.txt \
  123. whatLabel:is_return whatApps:0,4,21,3,6,17,23
  124. if [ $? -ne 0 ]; then
  125. echo "Spark特征分桶处理任务执行失败"
  126. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step3训练数据产出\n【是否成功】:error\n【信息】:Spark特征分桶处理任务执行失败"
  127. exit 1
  128. else
  129. echo "spark特征分桶处理执行成功"
  130. fi
  131. # 3 对比AUC 前置对比3日模型数据 与 线上模型数据效果对比,如果3日模型优于线上,更新线上模型
  132. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
  133. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  134. if [ $? -ne 0 ]; then
  135. echo "推荐线上模型AUC计算失败"
  136. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败"
  137. else
  138. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  139. if [ $? -ne 0 ]; then
  140. echo "推荐新模型AUC计算失败"
  141. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt"
  142. else
  143. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  144. if [ $? -ne 0 ]; then
  145. echo "推荐线上模型AUC计算失败"
  146. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败"
  147. else
  148. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  149. if [ $? -ne 0 ]; then
  150. echo "推荐新模型AUC计算失败"
  151. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt"
  152. else
  153. # 4.1 对比auc数据判断是否更新线上模型
  154. if [ "$online_auc" \< "$new_auc" ]; then
  155. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  156. # 4.1.1 模型格式转换
  157. cat ${MODEL_PATH}/${model_name}_${today_early_3}.txt |
  158. awk -F " " '{
  159. if (NR == 1) {
  160. print $1"\t"$2
  161. } else {
  162. split($0, fields, " ");
  163. OFS="\t";
  164. line=""
  165. for (i = 1; i <= 10 && i <= length(fields); i++) {
  166. line = (line ? line "\t" : "") fields[i];
  167. }
  168. print line
  169. }
  170. }' > ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt
  171. if [ $? -ne 0 ]; then
  172. echo "新模型文件格式转换失败"
  173. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型格式转换\n【是否成功】:error\n【信息】:新模型文件格式转换失败${MODEL_PATH}/${model_name}_${today_early_3}.txt"
  174. else
  175. # 4.1.2 模型文件上传OSS
  176. online_model_path=${OSS_PATH}/${model_name}.txt
  177. $HADOOP fs -test -e ${online_model_path}
  178. if [ $? -eq 0 ]; then
  179. echo "数据存在, 先删除。"
  180. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  181. else
  182. echo "数据不存在"
  183. fi
  184. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt ${online_model_path}
  185. if [ $? -eq 0 ]; then
  186. echo "推荐模型文件至OSS成功"
  187. # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  188. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  189. cp -f ${MODEL_PATH}/${model_name}_${today_early_3}.txt ${LAST_MODEL_HOME}/model_online.txt
  190. if [ $? -ne 0 ]; then
  191. echo "模型备份失败"
  192. fi
  193. /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc},已更新${model_name}_${today_early_3}.txt模型}"
  194. else
  195. echo "推荐模型文件至OSS失败"
  196. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败${MODEL_PATH}/${model_name}_${today_early_3}_change.txt --- ${online_model_path}"
  197. fi
  198. fi
  199. else
  200. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  201. /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc},${MODEL_PATH}/${model_name}_${today_early_3}.txt"
  202. fi
  203. fi
  204. fi
  205. fi
  206. fi
  207. # 4 模型训练
  208. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------开始模型训练,增量训练:${MODEL_PATH}/${model_name}_${today_early_3}.txt"
  209. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  210. $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${MODEL_PATH}/${model_name}_${today_early_3}.txt -core 8
  211. if [ $? -ne 0 ]; then
  212. echo "模型训练失败"
  213. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step5模型训练\n【是否成功】:error\n【信息】:${bucketDataPath}/${begin_early_2_Str}训练失败"
  214. fi
  215. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------模型训练完成:${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt"