handle_rov.sh 6.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141
  1. #!/bin/sh
  2. set -ex
  3. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  4. # 原始数据table name
  5. table='alg_recsys_sample_all'
  6. today="$(date +%Y%m%d)"
  7. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  8. #table='alg_recsys_sample_all_test'
  9. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  10. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  11. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  12. beginHhStr=00
  13. endHhStr=23
  14. # 各节点产出hdfs文件绝对路径
  15. originDataPath=/dw/recommend/model/13_sample_data/
  16. valueDataPath=/dw/recommend/model/14_feature_data/
  17. bucketDataPath=/dw/recommend/model/16_train_data/
  18. MODEL_PATH=/root/joe/recommend-emr-dataprocess/rov/model
  19. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  20. LAST_MODEL_HOME=/root/joe/model_online
  21. model_name=akaqjl8
  22. FM_HOME=/root/sunmingze/alphaFM/bin
  23. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  24. ## 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
  25. #online_model=${MODEL_PATH}/model_online.txt
  26. #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  27. #$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  28. #
  29. ## 1 对比auc数据判断是否更新线上模型
  30. #online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  31. #new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  32. #if [ "$online_auc" \< "$new_auc" ]; then
  33. # echo "推荐新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  34. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  35. # # todo 模型格式转换
  36. #
  37. # # todo 模型文件上传OSS
  38. #
  39. # # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
  40. #else
  41. # echo "推荐新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  42. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  43. ## exit 1
  44. #fi
  45. #
  46. #
  47. ## 2 判断上游表是否生产完成,最长等待到12点
  48. ## shellcheck disable=SC2039
  49. #source /root/anaconda3/bin/activate py37
  50. ## shellcheck disable=SC2154
  51. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
  52. #while true; do
  53. # python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
  54. # echo "python 返回值:${python_return_code}"
  55. # if [ $python_return_code -eq 0 ]; then
  56. # echo "Python程序返回0,校验存在数据,退出循环。"
  57. # break
  58. # fi
  59. # echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
  60. # sleep 300
  61. # current_hour=$(date +%H)
  62. # current_minute=$(date +%M)
  63. # # shellcheck disable=SC2039
  64. # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  65. # echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
  66. # exit 1
  67. # fi
  68. #done
  69. #
  70. ## 3 生产原始数据
  71. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
  72. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  73. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
  74. #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  75. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  76. #tablePart:64 repartition:32 \
  77. #beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
  78. #savePath:${originDataPath} \
  79. #table:${table}
  80. #if [ $? -ne 0 ]; then
  81. # echo "Spark原始样本生产任务执行失败"
  82. # exit 1
  83. #else
  84. # echo "spark原始样本生产执行成功"
  85. #fi
  86. #
  87. #
  88. ## 4 特征值拼接
  89. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
  90. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  91. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
  92. #--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
  93. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  94. #readPath:${originDataPath} \
  95. #savePath:${valueDataPath} \
  96. #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  97. #if [ $? -ne 0 ]; then
  98. # echo "Spark特征值拼接处理任务执行失败"
  99. # exit 1
  100. #else
  101. # echo "spark特征值拼接处理执行成功"
  102. #fi
  103. #
  104. ## 5 特征分桶
  105. #echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
  106. #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  107. #--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
  108. #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  109. #../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  110. #readPath:${valueDataPath} \
  111. #savePath:${bucketDataPath} \
  112. #beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
  113. #if [ $? -ne 0 ]; then
  114. # echo "Spark特征分桶处理任务执行失败"
  115. # exit 1
  116. #else
  117. # echo "spark特征分桶处理执行成功"
  118. #fi
  119. #
  120. ## 6 模型训练
  121. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  122. #if [ $? -ne 0 ]; then
  123. # echo "模型训练失败"
  124. # /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
  125. # exit 1
  126. #fi
  127. $HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  128. if [ $? -ne 0 ]; then
  129. echo "模型训练失败"
  130. /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
  131. exit 1
  132. fi