check_auc.sh 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120
  1. #!/bin/sh
  2. set -ex
  3. source /root/anaconda3/bin/activate py37
  4. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  5. # 原始数据table name
  6. table='alg_recsys_sample_all'
  7. today="$(date +%Y%m%d)"
  8. #today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  9. today_early_3=20240703
  10. #table='alg_recsys_sample_all_test'
  11. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  12. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  13. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  14. beginHhStr=00
  15. endHhStr=23
  16. max_hour=05
  17. max_minute=00
  18. # 各节点产出hdfs文件绝对路径
  19. # 源数据文件
  20. originDataPath=/dw/recommend/model/13_sample_data/
  21. # 特征值
  22. valueDataPath=/dw/recommend/model/14_feature_data/
  23. # 特征分桶
  24. bucketDataPath=/dw/recommend/model/16_train_data/
  25. # 模型数据路径
  26. MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
  27. # 预测路径
  28. PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
  29. # 历史线上正在使用的模型数据路径
  30. LAST_MODEL_HOME=/root/joe/model_online
  31. # 模型数据文件前缀
  32. model_name=akaqjl8
  33. # fm模型
  34. FM_HOME=/root/sunmingze/alphaFM/bin
  35. # hadoop
  36. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  37. # 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
  38. echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
  39. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  40. #$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  41. #$HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  42. #$HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  43. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  44. if [ $? -ne 0 ]; then
  45. echo "推荐线上模型AUC计算失败"
  46. # /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败"
  47. exit 1
  48. fi
  49. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  50. if [ $? -ne 0 ]; then
  51. echo "推荐新模型AUC计算失败"
  52. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败"
  53. exit 1
  54. fi
  55. # 1 对比auc数据判断是否更新线上模型
  56. if [ "$online_auc" \< "$new_auc" ]; then
  57. echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  58. # 模型格式转换
  59. cat ${MODEL_PATH}/${model_name}_${today_early_3}.txt |
  60. awk -F " " '{
  61. if (NR == 1) {
  62. print $1"\t"$2
  63. } else {
  64. split($0, fields, " ");
  65. OFS="\t";
  66. line=""
  67. for (i = 1; i <= 10 && i <= length(fields); i++) {
  68. line = (line ? line "\t" : "") fields[i];
  69. }
  70. print line
  71. }
  72. }' > ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt
  73. if [ $? -ne 0 ]; then
  74. echo "新模型文件格式转换失败"
  75. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型文件格式转换失败"
  76. exit 1
  77. fi
  78. # 模型文件上传OSS
  79. # online_model_path=${OSS_PATH}/${model_name}.txt
  80. # $HADOOP fs -test -e ${online_model_path}
  81. # if [ $? -eq 0 ]; then
  82. # echo "数据存在, 先删除。"
  83. # $HADOOP fs -rm -r -skipTrash ${online_model_path}
  84. # else
  85. # echo "数据不存在"
  86. # fi
  87. #
  88. # $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt ${online_model_path}
  89. # if [ $? -eq 0 ]; then
  90. # echo "推荐模型文件至OSS成功"
  91. # else
  92. # echo "推荐模型文件至OSS失败"
  93. ## /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型文件至OSS失败"
  94. # exit 1
  95. # fi
  96. # 本地保存最新的线上使用的模型,用于下一次的AUC验证
  97. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  98. cp -f ${MODEL_PATH}/${model_name}_${today_early_3}.txt ${LAST_MODEL_HOME}/model_online.txt
  99. if [ $? -ne 0 ]; then
  100. echo "模型备份失败"
  101. /root/anaconda3/bin/python ad/ad_monitor_util.py "模型备份失败 - 最新模型地址: ${MODEL_PATH}/${model_name}_${today_early_1}.txt"
  102. exit 1
  103. fi
  104. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  105. else
  106. echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  107. # /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
  108. fi