123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377 |
- #!/bin/sh
- set -x
- export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
- export PATH=$SPARK_HOME/bin:$PATH
- export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
- export JAVA_HOME=/usr/lib/jvm/java-1.8.0
- source /root/anaconda3/bin/activate py37
- # 全局常量
- originDataSavePath=/dw/recommend/model/31_ad_sample_data_v4_auto
- bucketFeatureSavePathHome=/dw/recommend/model/33_ad_train_data_v4_auto
- model_name=model_bkb8_v4
- LAST_MODEL_HOME=/root/zhaohp/model_online
- MODEL_HOME=/root/zhaohp/recommend-emr-dataprocess/model
- OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model
- PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
- HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
- FM_HOME=/root/sunmingze/alphaFM
- today="$(date +%Y%m%d)"
- today_early_1="$(date -d '1 days ago' +%Y%m%d)"
- start_time=$(date +%s)
- elapsed=0
- LOG_PREFIX=广告模型自动更新任务
- # 训练和预测数据分区
- train_begin_str=''
- train_end_str=''
- predict_begin_str=''
- predict_end_str=''
- # HDFS保存数据的目录
- trainBucketFeaturePath=${bucketFeatureSavePathHome}
- predictBucketFeaturePath=${bucketFeatureSavePathHome}
- local_model_file_path=${MODEL_HOME}/${model_name}.txt
- local_change_model_file_path=${MODEL_HOME}/${model_name}_change.txt
- max_hour=21
- max_minute=20
- # 全局初始化
- global_init() {
- # 获取当前小时,确定需要使用的数据分区范围
- local current_hour="$(date +%H)"
- if [ $current_hour -le 06 ]; then
- train_begin_str=${today_early_1}08
- train_end_str=${today_early_1}21
- predict_begin_str=${today_early_1}22
- predict_end_str=${today_early_1}23
- trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/train
- predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/predict
- local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt
- local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt
- max_hour=08
- elif [ $current_hour -ge 16 ]; then
- train_begin_str=${today_early_1}22
- train_end_str=${today}13
- predict_begin_str=${today}14
- predict_end_str=${today}15
- trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/train
- predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/predict
- local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt
- local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt
- max_hour=21
- else
- echo "当前时间段异常: 退出任务"
- exit 1
- fi
- # 删除HDFS目录,保证本次任务运行时目录干净
- $HADOOP fs -rm -r -skipTrash ${trainBucketFeaturePath}
- $HADOOP fs -rm -r -skipTrash ${predictBucketFeaturePath}
- echo "全局变量初始化化: "
- echo " train_begin_str=${train_begin_str}"
- echo " train_end_str=${train_end_str}"
- echo " predict_begin_str=${predict_begin_str}"
- echo " predict_end_str=${predict_end_str}"
- echo " originDataSavePath=${originDataSavePath}"
- echo " trainBucketFeaturePath=${trainBucketFeaturePath}"
- echo " predictBucketFeaturePath=${predictBucketFeaturePath}"
- echo " local_model_file_path=${local_model_file_path}"
- echo " local_change_model_file_path=${local_change_model_file_path}"
- echo " max_hour=${max_hour}"
- }
- # 校验命令的退出码
- check_run_status() {
- local status=$1
- local step_start_time=$2
- local step_name=$3
- local step_end_time=$(date +%s)
- local step_elapsed=$(($step_end_time - $step_start_time))
- if [ $status -ne 0 ]; then
- echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
- local elapsed=$(($step_end_time - $start_time))
- # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- else
- echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
- fi
- }
- # 校验大数据任务是否执行完成
- check_ad_hive() {
- local step_start_time=$(date +%s)
- while true; do
- local python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${predict_end_str:0:8} --hh ${predict_end_str:8:10})
- local step_end_time=$(date +%s)
- local elapsed=$(($step_end_time - $step_start_time))
- if [ "$python_return_code" -eq 0 ]; then
- break
- fi
- echo "Python程序返回非0值,等待五分钟后再次调用。"
- sleep 300
- local current_hour=$(date +%H)
- local current_minute=$(date +%M)
- if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
- local msg="大数据数据生产校验失败, 分区: ${today}10"
- echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
- # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- done
- echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
- }
- # 原始特征生产
- make_origin_data() {
- local step_start_time=$(date +%s)
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
- --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- tablePart:64 repartition:16 \
- beginStr:${train_begin_str} endStr:${predict_end_str} \
- savePath:${originDataSavePath} \
- table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
- idDefaultValue:0.01
- local return_code=$?
- check_run_status $return_code $step_start_time "Spark原始样本生产任务"
- }
- # 训练用数据分桶
- make_train_bucket_feature() {
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
- --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- beginStr:${train_begin_str:0:8} endStr:${train_end_str:0:8} repartition:100 \
- filterNames:adid_,targeting_conversion_ \
- readPath:${originDataSavePath} \
- savePath:${trainBucketFeaturePath}
- }
- # 预测用数据分桶
- make_predict_bucket_feature() {
- /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
- --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
- --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
- ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
- beginStr:${predict_begin_str:0:8} endStr:${predict_end_str:0:8} repartition:100 \
- filterNames:adid_,targeting_conversion_ \
- readPath:${originDataSavePath} \
- savePath:${predictBucketFeaturePath}
- }
- # 特征分桶,训练用的数据和预测用的数据分不同的目录
- make_bucket_feature() {
- local step_start_time=$(date +%s)
-
- # 训练用的数据
- make_train_bucket_feature &
- train_bucket_pid=$!
- wait $train_bucket_pid
- local train_return_code=$?
- check_run_status $train_return_code $step_start_time "Spark特征分桶任务: 训练数据分桶"
-
- # 预测用的数据
- make_predict_bucket_feature &
- predict_bucket_pid=$!
- wait $predict_bucket_pid
- local predict_return_code=$?
- check_run_status $predict_return_code $step_start_time "Spark特征分桶任务: 预测数据分桶"
- }
- # 模型训练
- model_train() {
- local step_start_time=$(date +%s)
- $HADOOP fs -text ${trainBucketFeaturePath}/*/* | ${FM_HOME}/bin/fm_train -m ${local_model_file_path} -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
- local return_code=$?
- check_run_status $return_code $step_start_time "模型训练"
- }
- # 计算线上模型的AUC
- calc_online_model_auc() {
- $HADOOP fs -text ${predictBucketFeaturePath}/*/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${train_end_str}_online.txt
- online_auc=`cat ${PREDICT_PATH}/${model_name}_${train_end_str}_online.txt | /root/sunmingze/AUC/AUC`
- }
- # 计算新模型AUC
- calc_new_model_auc() {
- $HADOOP fs -text ${predictBucketFeaturePath}/*/* | ${FM_HOME}/bin/fm_predict -m ${local_model_file_path} -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${train_end_str}_new.txt
- new_auc=`cat ${PREDICT_PATH}/${model_name}_${train_end_str}_new.txt | /root/sunmingze/AUC/AUC`
- }
- # AUC对比
- auc_compare() {
- local step5_start_time=$(date +%s)
- # 5.1 计算线上模型的AUC
- local step_start_time=$(date +%s)
- calc_online_model_auc &
- local calc_online_model_auc_pid=$!
- wait $calc_online_model_auc_pid
- local return_code=$?
- check_run_status $return_code $step_start_time "线上模型AUC计算"
- # 5.2 计算新模型的AUC
- step_start_time=$(date +%s)
- calc_new_model_auc &
- local calc_new_model_auc_pid=$!
- wait $calc_new_model_auc_pid
- local new_return_code=$?
- check_run_status $new_return_code $step_start_time "新模型的AUC计算"
- echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
- # 5.3 计算新模型与线上模型的AUC差值的绝对值
- auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
- local auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
- local step_end_time=$(date +%s)
- local step5_elapsed=$(($step_end_time - $step5_start_time))
- # 5.4 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
- if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
- local msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
- echo -e "$LOG_PREFIX -- $msg: 耗时 $step5_elapsed"
- elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
- local msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
- echo -e "$LOG_PREFIX -- $msg: 耗时 $step5_elapsed"
- else
- local msg="新模型与线上模型差值大于等于阈值0.005或新模型的AUC小于0.73 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff"
- echo -e "$LOG_PREFIX -- $msg: 耗时 $step5_elapsed"
- local elapsed=$(($step_end_time - $start_time))
- # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- exit 1
- fi
- }
- # 模型格式转换
- model_to_online_format() {
- local step_start_time=$(date +%s)
- cat ${local_model_file_path} |
- awk -F " " '{
- if (NR == 1) {
- print $1"\t"$2
- } else {
- split($0, fields, " ");
- OFS="\t";
- line=""
- for (i = 1; i <= 10 && i <= length(fields); i++) {
- line = (line ? line "\t" : "") fields[i];
- }
- print line
- }
- }' > ${local_change_model_file_path}
- local return_code=$?
- check_run_status $return_code $step_start_time "模型格式转换"
- }
- # 模型文件上传OSS
- model_upload_oss() {
- local step_start_time=$(date +%s)
- local online_model_path=${OSS_PATH}/${model_name}.txt
- $HADOOP fs -test -e ${online_model_path}
- if [ $? -eq 0 ]; then
- echo "删除已存在的OSS模型文件"
- $HADOOP fs -rm -r -skipTrash ${online_model_path}
- fi
- $HADOOP fs -put ${local_change_model_file_path} ${online_model_path}
-
- local return_code=$?
- check_run_status $return_code $step_start_time "模型文件上传OSS"
-
- }
- # 模型文件本地备份
- model_local_back() {
- local step_start_time=$(date +%s)
- # 将之前的线上模型进行备份,表示从上一个备份时间到当前时间内,使用的线上模型都是此文件
- # 假设当前是07-11,上一次备份时间为07-07。备份之后表示从07-07下午至07-11上午线上使用的模型文件都是model_online_20240711.txt
- file_suffix=$(date "+%Y%m%d%H")
- cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_${file_suffix}.txt
- cp -f ${local_model_file_path} ${LAST_MODEL_HOME}/model_online.txt
- local return_code=$?
- check_run_status $return_code $step_start_time "模型备份"
- }
- # 任务完成通知
- success_inform() {
- local step_end_time=$(date +%s)
- local msg="\n\t - 广告模型文件更新完成 \n\t - 前一天线上模型全天数据AUC: $yesterday_online_auc \n\t - 前一天新模型全天数据AUC: $yesterday_new_auc \n\t - 新模型AUC: $new_auc \n\t - 线上模型AUC: $online_auc \n\t - AUC差值: $auc_diff \n\t - 模型上传路径: $online_model_path"
- echo -e "$LOG_PREFIX -- 模型更新完成 -- $msg: 耗时 $step_elapsed"
- local elapsed=$(($step_end_time - $start_time))
- # /root/anaconda3/bin/python ad/ad_monitor_util.py --level info --msg "$msg" --start "$start_time" --elapsed "$elapsed"
- }
- main() {
- global_init
- check_ad_hive
- make_origin_data
- make_bucket_feature
- # model_train
- # auc_compare
- # model_to_online_format
- # model_upload_oss
- # model_local_back
- # success_inform
- }
- main
- # nohup ./ad/02_ad_model_update_twice_daily.sh > logs/02_twice_daily.log 2>&1 &
|