02_ad_model_update_twice_daily.sh 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. #!/bin/sh
  2. set -x
  3. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  4. export PATH=$SPARK_HOME/bin:$PATH
  5. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  6. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  7. source /root/anaconda3/bin/activate py37
  8. # 全局常量
  9. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v4_auto
  10. bucketFeatureSavePathHome=/dw/recommend/model/33_ad_train_data_v4_auto
  11. model_name=model_bkb8_v4
  12. LAST_MODEL_HOME=/root/zhaohp/model_online
  13. MODEL_HOME=/root/zhaohp/recommend-emr-dataprocess/model
  14. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model
  15. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  16. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  17. FM_HOME=/root/sunmingze/alphaFM
  18. today="$(date +%Y%m%d)"
  19. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  20. start_time=$(date +%s)
  21. elapsed=0
  22. LOG_PREFIX=广告模型自动更新任务
  23. # 训练和预测数据分区
  24. train_begin_str=''
  25. train_end_str=''
  26. predict_begin_str=''
  27. predict_end_str=''
  28. # HDFS保存数据的目录
  29. trainBucketFeaturePath=${bucketFeatureSavePathHome}
  30. predictBucketFeaturePath=${bucketFeatureSavePathHome}
  31. local_model_file_path=${MODEL_HOME}/${model_name}.txt
  32. local_change_model_file_path=${MODEL_HOME}/${model_name}_change.txt
  33. max_hour=21
  34. max_minute=20
  35. # 全局初始化
  36. global_init() {
  37. # 获取当前小时,确定需要使用的数据分区范围
  38. local current_hour="$(date +%H)"
  39. if [ $current_hour -le 06 ]; then
  40. train_begin_str=${today_early_1}08
  41. train_end_str=${today_early_1}21
  42. predict_begin_str=${today_early_1}22
  43. predict_end_str=${today_early_1}23
  44. trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/train
  45. predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/predict
  46. local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt
  47. local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt
  48. max_hour=08
  49. elif [ $current_hour -ge 16 ]; then
  50. train_begin_str=${today_early_1}22
  51. train_end_str=${today}13
  52. predict_begin_str=${today}14
  53. predict_end_str=${today}15
  54. trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/train
  55. predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/predict
  56. local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt
  57. local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt
  58. max_hour=21
  59. else
  60. echo "当前时间段异常: 退出任务"
  61. exit 1
  62. fi
  63. # 删除HDFS目录,保证本次任务运行时目录干净
  64. $HADOOP fs -rm -r -skipTrash ${trainBucketFeaturePath}
  65. $HADOOP fs -rm -r -skipTrash ${predictBucketFeaturePath}
  66. echo "全局变量初始化化: "
  67. echo " train_begin_str=${train_begin_str}"
  68. echo " train_end_str=${train_end_str}"
  69. echo " predict_begin_str=${predict_begin_str}"
  70. echo " predict_end_str=${predict_end_str}"
  71. echo " originDataSavePath=${originDataSavePath}"
  72. echo " trainBucketFeaturePath=${trainBucketFeaturePath}"
  73. echo " predictBucketFeaturePath=${predictBucketFeaturePath}"
  74. echo " local_model_file_path=${local_model_file_path}"
  75. echo " local_change_model_file_path=${local_change_model_file_path}"
  76. echo " max_hour=${max_hour}"
  77. }
  78. # 校验命令的退出码
  79. check_run_status() {
  80. local status=$1
  81. local step_start_time=$2
  82. local step_name=$3
  83. local step_end_time=$(date +%s)
  84. local step_elapsed=$(($step_end_time - $step_start_time))
  85. if [ $status -ne 0 ]; then
  86. echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
  87. local elapsed=$(($step_end_time - $start_time))
  88. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  89. exit 1
  90. else
  91. echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
  92. fi
  93. }
  94. # 校验大数据任务是否执行完成
  95. check_ad_hive() {
  96. local step_start_time=$(date +%s)
  97. while true; do
  98. local python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${predict_end_str:0:8} --hh ${predict_end_str:8:10})
  99. local step_end_time=$(date +%s)
  100. local elapsed=$(($step_end_time - $step_start_time))
  101. if [ "$python_return_code" -eq 0 ]; then
  102. break
  103. fi
  104. echo "Python程序返回非0值,等待五分钟后再次调用。"
  105. sleep 300
  106. local current_hour=$(date +%H)
  107. local current_minute=$(date +%M)
  108. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  109. local msg="大数据数据生产校验失败, 分区: ${today}10"
  110. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
  111. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  112. exit 1
  113. fi
  114. done
  115. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  116. }
  117. # 原始特征生产
  118. make_origin_data() {
  119. local step_start_time=$(date +%s)
  120. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  121. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  122. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  123. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  124. tablePart:64 repartition:16 \
  125. beginStr:${train_begin_str} endStr:${predict_end_str} \
  126. savePath:${originDataSavePath} \
  127. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  128. idDefaultValue:0.01
  129. local return_code=$?
  130. check_run_status $return_code $step_start_time "Spark原始样本生产任务"
  131. }
  132. # 训练用数据分桶
  133. make_train_bucket_feature() {
  134. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  135. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
  136. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  137. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  138. beginStr:${train_begin_str:0:8} endStr:${train_end_str:0:8} repartition:100 \
  139. filterNames:adid_,targeting_conversion_ \
  140. readPath:${originDataSavePath} \
  141. savePath:${trainBucketFeaturePath}
  142. }
  143. # 预测用数据分桶
  144. make_predict_bucket_feature() {
  145. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  146. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
  147. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  148. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  149. beginStr:${predict_begin_str:0:8} endStr:${predict_end_str:0:8} repartition:100 \
  150. filterNames:adid_,targeting_conversion_ \
  151. readPath:${originDataSavePath} \
  152. savePath:${predictBucketFeaturePath}
  153. }
  154. # 特征分桶,训练用的数据和预测用的数据分不同的目录
  155. make_bucket_feature() {
  156. local step_start_time=$(date +%s)
  157. # 训练用的数据
  158. make_train_bucket_feature &
  159. train_bucket_pid=$!
  160. wait $train_bucket_pid
  161. local train_return_code=$?
  162. check_run_status $train_return_code $step_start_time "Spark特征分桶任务: 训练数据分桶"
  163. # 预测用的数据
  164. make_predict_bucket_feature &
  165. predict_bucket_pid=$!
  166. wait $predict_bucket_pid
  167. local predict_return_code=$?
  168. check_run_status $predict_return_code $step_start_time "Spark特征分桶任务: 预测数据分桶"
  169. }
  170. # 模型训练
  171. model_train() {
  172. local step_start_time=$(date +%s)
  173. $HADOOP fs -text ${trainBucketFeaturePath}/*/* | ${FM_HOME}/bin/fm_train -m ${local_model_file_path} -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  174. local return_code=$?
  175. check_run_status $return_code $step_start_time "模型训练"
  176. }
  177. # 计算线上模型的AUC
  178. calc_online_model_auc() {
  179. $HADOOP fs -text ${predictBucketFeaturePath}/*/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${train_end_str}_online.txt
  180. online_auc=`cat ${PREDICT_PATH}/${model_name}_${train_end_str}_online.txt | /root/sunmingze/AUC/AUC`
  181. }
  182. # 计算新模型AUC
  183. calc_new_model_auc() {
  184. $HADOOP fs -text ${predictBucketFeaturePath}/*/* | ${FM_HOME}/bin/fm_predict -m ${local_model_file_path} -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${train_end_str}_new.txt
  185. new_auc=`cat ${PREDICT_PATH}/${model_name}_${train_end_str}_new.txt | /root/sunmingze/AUC/AUC`
  186. }
  187. # AUC对比
  188. auc_compare() {
  189. local step5_start_time=$(date +%s)
  190. # 5.1 计算线上模型的AUC
  191. local step_start_time=$(date +%s)
  192. calc_online_model_auc &
  193. local calc_online_model_auc_pid=$!
  194. wait $calc_online_model_auc_pid
  195. local return_code=$?
  196. check_run_status $return_code $step_start_time "线上模型AUC计算"
  197. # 5.2 计算新模型的AUC
  198. step_start_time=$(date +%s)
  199. calc_new_model_auc &
  200. local calc_new_model_auc_pid=$!
  201. wait $calc_new_model_auc_pid
  202. local new_return_code=$?
  203. check_run_status $new_return_code $step_start_time "新模型的AUC计算"
  204. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  205. # 5.3 计算新模型与线上模型的AUC差值的绝对值
  206. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  207. local auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  208. local step_end_time=$(date +%s)
  209. local step5_elapsed=$(($step_end_time - $step5_start_time))
  210. # 5.4 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  211. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  212. local msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
  213. echo -e "$LOG_PREFIX -- $msg: 耗时 $step5_elapsed"
  214. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  215. local msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  216. echo -e "$LOG_PREFIX -- $msg: 耗时 $step5_elapsed"
  217. else
  218. local msg="新模型与线上模型差值大于等于阈值0.005或新模型的AUC小于0.73 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff"
  219. echo -e "$LOG_PREFIX -- $msg: 耗时 $step5_elapsed"
  220. local elapsed=$(($step_end_time - $start_time))
  221. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  222. exit 1
  223. fi
  224. }
  225. # 模型格式转换
  226. model_to_online_format() {
  227. local step_start_time=$(date +%s)
  228. cat ${local_model_file_path} |
  229. awk -F " " '{
  230. if (NR == 1) {
  231. print $1"\t"$2
  232. } else {
  233. split($0, fields, " ");
  234. OFS="\t";
  235. line=""
  236. for (i = 1; i <= 10 && i <= length(fields); i++) {
  237. line = (line ? line "\t" : "") fields[i];
  238. }
  239. print line
  240. }
  241. }' > ${local_change_model_file_path}
  242. local return_code=$?
  243. check_run_status $return_code $step_start_time "模型格式转换"
  244. }
  245. # 模型文件上传OSS
  246. model_upload_oss() {
  247. local step_start_time=$(date +%s)
  248. local online_model_path=${OSS_PATH}/${model_name}.txt
  249. $HADOOP fs -test -e ${online_model_path}
  250. if [ $? -eq 0 ]; then
  251. echo "删除已存在的OSS模型文件"
  252. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  253. fi
  254. $HADOOP fs -put ${local_change_model_file_path} ${online_model_path}
  255. local return_code=$?
  256. check_run_status $return_code $step_start_time "模型文件上传OSS"
  257. }
  258. # 模型文件本地备份
  259. model_local_back() {
  260. local step_start_time=$(date +%s)
  261. # 将之前的线上模型进行备份,表示从上一个备份时间到当前时间内,使用的线上模型都是此文件
  262. # 假设当前是07-11,上一次备份时间为07-07。备份之后表示从07-07下午至07-11上午线上使用的模型文件都是model_online_20240711.txt
  263. file_suffix=$(date "+%Y%m%d%H")
  264. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_${file_suffix}.txt
  265. cp -f ${local_model_file_path} ${LAST_MODEL_HOME}/model_online.txt
  266. local return_code=$?
  267. check_run_status $return_code $step_start_time "模型备份"
  268. }
  269. # 任务完成通知
  270. success_inform() {
  271. local step_end_time=$(date +%s)
  272. local msg="\n\t - 广告模型文件更新完成 \n\t - 前一天线上模型全天数据AUC: $yesterday_online_auc \n\t - 前一天新模型全天数据AUC: $yesterday_new_auc \n\t - 新模型AUC: $new_auc \n\t - 线上模型AUC: $online_auc \n\t - AUC差值: $auc_diff \n\t - 模型上传路径: $online_model_path"
  273. echo -e "$LOG_PREFIX -- 模型更新完成 -- $msg: 耗时 $step_elapsed"
  274. local elapsed=$(($step_end_time - $start_time))
  275. # /root/anaconda3/bin/python ad/ad_monitor_util.py --level info --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  276. }
  277. main() {
  278. global_init
  279. check_ad_hive
  280. make_origin_data
  281. make_bucket_feature
  282. # model_train
  283. # auc_compare
  284. # model_to_online_format
  285. # model_upload_oss
  286. # model_local_back
  287. # success_inform
  288. }
  289. main
  290. # nohup ./ad/02_ad_model_update_twice_daily.sh > logs/02_twice_daily.log 2>&1 &