123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- import argparse
- import gzip
- import os.path
- from collections import OrderedDict
- import pandas as pd
- import numpy as np
- from hdfs import InsecureClient
- client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
- SEGMENT_BASE_PATH = "/dw/recommend/model/36_score_calibration"
- def read_predict_from_local_txt(txt_file) -> list:
- result = []
- with open(txt_file, "r") as f:
- for line in f.readlines():
- sp = line.replace("\n", "").split("\t")
- if len(sp) == 4:
- label = int(sp[0])
- cid = sp[3].split("_")[0]
- score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
- result.append({
- "label": label,
- "cid": cid,
- "score": score
- })
- return result
- def read_predict_from_hdfs(hdfs_path: str) -> list:
- if not hdfs_path.endswith("/"):
- hdfs_path += "/"
- result = []
- for file in client.list(hdfs_path):
- with client.read(hdfs_path + file) as reader:
- with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
- for line in gz_file.read().decode("utf-8").split("\n"):
- split = line.split("\t")
- if len(split) == 4:
- cid = split[3].split("_")[0]
- label = int(split[0])
- score = float(split[2].replace("[", "").replace("]", "").split(",")[1])
- result.append({
- "cid": cid,
- "label": label,
- "score": score
- })
- return result
- def _segment_v1(scores, step):
- bins = []
- for i in range(0, len(scores), int((len(scores) / step))):
- if i == 0:
- bins.append(0)
- else:
- bins.append(scores[i])
- bins.append(1)
- return list(OrderedDict.fromkeys(bins))
- def segment_calc_diff_rate_by_score(df: pd.DataFrame, segment_file_path: str, step=100) -> [pd.DataFrame, pd.DataFrame]:
- sored_df = df.sort_values(by=['score'])
- # 评估分数分段
- scores = sored_df['score'].values
- bins = _segment_v1(scores, step)
- # 等分分桶
- # split_indices = np.array_split(np.arange(len(scores)), step)
- # bins = [scores[index[0]] for index in split_indices] + [scores[split_indices[-1][-1]]]
- sored_df['score_segment'] = pd.cut(sored_df['score'], bins=bins)
- # 计算分段内分数的差异
- group_df = sored_df.groupby("score_segment", observed=True).agg(
- segment_label_sum=('label', 'sum'),
- segment_label_cnt=('label', 'count'),
- segment_score_avg=('score', 'mean'),
- ).reset_index()
- group_df['segment_true_score'] = group_df['segment_label_sum'] / group_df['segment_label_cnt']
- group_df['segment_diff_rate'] = (group_df['segment_score_avg'] / group_df['segment_true_score'] - 1).mask(group_df['segment_true_score'] == 0, 0)
- # 完整的分段文件保存
- group_df.to_csv(segment_file_path, sep="\t", index=False)
- filtered_df = group_df[(abs(group_df['segment_diff_rate']) >= 0.2) & (group_df['segment_label_cnt'] >= 1000)]
- filtered_df = filtered_df[['score_segment', 'segment_diff_rate']]
- # 每条曝光数据添加对应分数的diff
- merged_df = pd.merge(sored_df, filtered_df, on="score_segment", how="left")
- merged_df['segment_diff_rate'] = merged_df['segment_diff_rate'].fillna(0)
- return merged_df, filtered_df
- def read_and_calibration_predict(predict_path: str, is_hdfs=True, step=100) -> [pd.DataFrame, pd.DataFrame]:
- """
- 读取评估结果,并进行校准
- """
- if is_hdfs:
- # 文件路径处理
- predicts = read_predict_from_hdfs(predict_path)
- else:
- predicts = read_predict_from_local_txt(predict_path)
- df = pd.DataFrame(predicts)
- # 模型分分段计算与真实ctcvr的dff_rate
- predict_basename = os.path.basename(predict_path)
- if predict_basename.endswith("/"):
- predict_basename = predict_basename[:-1]
- df, segment_df = segment_calc_diff_rate_by_score(df, segment_file_path=f"{SEGMENT_BASE_PATH}/{predict_basename}", step=100)
- # 生成校准后的分数
- df['score_2'] = df['score'] / (1 + df['segment_diff_rate'])
- # 按CID统计真实ctcvr和校准前后的平均模型分
- grouped_df = df.groupby("cid").agg(
- view=('cid', 'size'),
- conv=('label', 'sum'),
- score_avg=('score', lambda x: round(x.mean(), 6)),
- score_2_avg=('score_2', lambda x: round(x.mean(), 6)),
- ).reset_index()
- grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
- return grouped_df, segment_df
- def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
- old_group_df, old_segment_df = read_and_calibration_predict(old_predict_path, is_hdfs=True)
- new_group_df, new_segment_df = read_and_calibration_predict(new_predict_path, is_hdfs=True)
- # 分段文件保存, 此处保留的最后使用的分段文件,不是所有的分段
- new_segment_df.to_csv(calibration_file, sep='\t', index=False, header=False)
- # 字段重命名,和列过滤
- old_group_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg'}, inplace=True)
- new_group_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg'}, inplace=True)
- old_group_df = old_group_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg']]
- new_group_df = new_group_df[['cid', 'new_score_avg', 'new_score_2_avg']]
- merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
- # 计算与真实ctcvr的差异值
- merged["(new-true)/true"] = (merged['new_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- merged["(old-true)/true"] = (merged['old_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- # 计算校准后的模型分与ctcvr的差异值
- merged["(new2-true)/true"] = (merged['new_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- merged["(old2-true)/true"] = (merged['old_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
- # 按照曝光排序,写入本地文件
- merged = merged.sort_values(by=['view'], ascending=False)
- merged = merged[[
- 'cid', 'view', "conv", "true_ctcvr",
- "old_score_avg", "new_score_avg", "(old-true)/true", "(new-true)/true",
- "old_score_2_avg", "new_score_2_avg", "(old2-true)/true", "(new2-true)/true",
- ]]
- # 根据文件名保存不同的格式
- if analyse_file.endswith(".csv"):
- merged.to_csv(analyse_file, index=False)
- else:
- with open(analyse_file, "w") as writer:
- writer.write(merged.to_string(index=False))
- print("0")
- if __name__ == '__main__':
- parser = argparse.ArgumentParser(description="model_predict_analyse.py")
- parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
- parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
- parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
- parser.add_argument("-cf", "--calibration_file", required=True, help="线上使用的segment文件保存路径")
- args = parser.parse_args()
- _main(
- old_predict_path=args.old_predict_path,
- new_predict_path=args.new_predict_path,
- calibration_file=args.calibration_file,
- analyse_file=args.analyse_file
- )
|