change_oss.sh 3.3 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586
  1. #!/bin/sh
  2. set -x
  3. source /root/anaconda3/bin/activate py37
  4. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  5. export PATH=$SPARK_HOME/bin:$PATH
  6. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  7. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  8. # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
  9. # 原始数据table name
  10. table='alg_recsys_sample_all'
  11. today="$(date +%Y%m%d)"
  12. today_early_3="$(date -d '3 days ago' +%Y%m%d)"
  13. #table='alg_recsys_sample_all_test'
  14. # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
  15. begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  16. end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
  17. beginHhStr=00
  18. endHhStr=23
  19. max_hour=05
  20. max_minute=00
  21. # 各节点产出hdfs文件绝对路径
  22. # 源数据文件
  23. originDataPath=/dw/recommend/model/41_recsys_sample_data/
  24. # 特征值
  25. valueDataPath=/dw/recommend/model/14_feature_data/
  26. # 特征分桶
  27. bucketDataPath=/dw/recommend/model/43_recsys_train_data/
  28. # 模型数据路径
  29. MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
  30. # 预测路径
  31. PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
  32. # 历史线上正在使用的模型数据路径
  33. LAST_MODEL_HOME=/root/joe/model_online
  34. # 模型数据文件前缀
  35. model_name=model_nba8
  36. # fm模型
  37. FM_HOME=/root/sunmingze/alphaFM/bin
  38. # hadoop
  39. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  40. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  41. cat /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt |
  42. awk -F " " '{
  43. if (NR == 1) {
  44. print $1"\t"$2
  45. } else {
  46. split($0, fields, " ");
  47. OFS="\t";
  48. line=""
  49. for (i = 1; i <= 10 && i <= length(fields); i++) {
  50. line = (line ? line "\t" : "") fields[i];
  51. }
  52. print line
  53. }
  54. }' > /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22_change.txt
  55. if [ $? -ne 0 ]; then
  56. echo "新模型文件格式转换失败"
  57. fi
  58. # 4.1.2 模型文件上传OSS
  59. online_model_path=${OSS_PATH}/${model_name}.txt
  60. $HADOOP fs -test -e ${online_model_path}
  61. if [ $? -eq 0 ]; then
  62. echo "数据存在, 先删除。"
  63. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  64. else
  65. echo "数据不存在"
  66. fi
  67. $HADOOP fs -put /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22_change.txt ${online_model_path}
  68. if [ $? -eq 0 ]; then
  69. echo "推荐模型文件至OSS成功"
  70. # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
  71. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  72. cp -f /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt ${LAST_MODEL_HOME}/model_online.txt
  73. if [ $? -ne 0 ]; then
  74. echo "模型备份失败"
  75. fi
  76. /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step模型更新\n【是否成功】:success\n【信息】:已更新/root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt模型}"
  77. else
  78. echo "推荐模型文件至OSS失败"
  79. /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败/root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt --- ${online_model_path}"
  80. fi