1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- #!/bin/sh
- set -x
- source /root/anaconda3/bin/activate py37
- export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
- export PATH=$SPARK_HOME/bin:$PATH
- export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
- export JAVA_HOME=/usr/lib/jvm/java-1.8.0
- # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
- # 原始数据table name
- table='alg_recsys_sample_all'
- today="$(date +%Y%m%d)"
- today_early_3="$(date -d '3 days ago' +%Y%m%d)"
- #table='alg_recsys_sample_all_test'
- # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据
- begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
- end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
- beginHhStr=00
- endHhStr=23
- max_hour=05
- max_minute=00
- # 各节点产出hdfs文件绝对路径
- # 源数据文件
- originDataPath=/dw/recommend/model/41_recsys_sample_data/
- # 特征值
- valueDataPath=/dw/recommend/model/14_feature_data/
- # 特征分桶
- bucketDataPath=/dw/recommend/model/43_recsys_train_data/
- # 模型数据路径
- MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
- # 预测路径
- PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
- # 历史线上正在使用的模型数据路径
- LAST_MODEL_HOME=/root/joe/model_online
- # 模型数据文件前缀
- model_name=model_nba8
- # fm模型
- FM_HOME=/root/sunmingze/alphaFM/bin
- # hadoop
- HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
- OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
- cat /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt |
- awk -F " " '{
- if (NR == 1) {
- print $1"\t"$2
- } else {
- split($0, fields, " ");
- OFS="\t";
- line=""
- for (i = 1; i <= 10 && i <= length(fields); i++) {
- line = (line ? line "\t" : "") fields[i];
- }
- print line
- }
- }' > /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22_change.txt
- if [ $? -ne 0 ]; then
- echo "新模型文件格式转换失败"
- fi
- # 4.1.2 模型文件上传OSS
- online_model_path=${OSS_PATH}/${model_name}.txt
- $HADOOP fs -test -e ${online_model_path}
- if [ $? -eq 0 ]; then
- echo "数据存在, 先删除。"
- $HADOOP fs -rm -r -skipTrash ${online_model_path}
- else
- echo "数据不存在"
- fi
- $HADOOP fs -put /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22_change.txt ${online_model_path}
- if [ $? -eq 0 ]; then
- echo "推荐模型文件至OSS成功"
- # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
- cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
- cp -f /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt ${LAST_MODEL_HOME}/model_online.txt
- if [ $? -ne 0 ]; then
- echo "模型备份失败"
- fi
- /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step模型更新\n【是否成功】:success\n【信息】:已更新/root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt模型}"
- else
- echo "推荐模型文件至OSS失败"
- /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败/root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt --- ${online_model_path}"
- fi
|