123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121 |
- #!/bin/sh
- set -x
- export PATH=$SPARK_HOME/bin:$PATH
- export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
- export JAVA_HOME=/usr/lib/jvm/java-1.8.0
- sh_path=$(cd $(dirname $0); pwd)
- source ${sh_path}/00_common.sh
- source /root/anaconda3/bin/activate py37
- # 全局常量
- HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
- TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4
- BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4
- TABLE=alg_recsys_ad_sample_all
- # 特征文件名
- feature_file=20240703_ad_feature_name.txt
- # 模型本地临时保存路径
- model_local_home=/root/zhaohp/XGB/
- # 模型HDFS保存路径,测试时修改为其他路径,避免影响线上
- MODEL_PATH=/dw/recommend/model/35_ad_model
- # 预测结果保存路径,测试时修改为其他路径,避免影响线上
- PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data
- # 模型OSS保存路径,测试时修改为其他路径,避免影响线上
- MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
- # 线上模型名,测试时修改为其他模型名,避免影响线上
- model_name=model_xgb_351_1000_v2
- # 线上校准文件名
- OSS_CALIBRATION_FILE_NAME=model_xgb_351_1000_v2_calibration
- # 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上
- model_path_file=${model_local_home}/online_model_path.txt
- # 获取当前是星期几,1表示星期一
- current_day_of_week="$(date +"%u")"
- # 任务开始时间
- start_time=$(date +%s)
- # 前一天
- today_early_1="$(date -d '1 days ago' +%Y%m%d)"
- # 线上模型在HDFS中的路径
- online_model_path=`cat ${model_path_file}`
- # 训练用的数据路径
- train_data_path=""
- # 评估用的数据路径
- predict_date_path=""
- #评估结果保存路径
- new_model_predict_result_path=""
- # 模型保存路径
- model_save_path=""
- # 评测结果保存路径,后续需要根据此文件评估是否要更新模型
- predict_analyse_file_path=/root/zhaohp/XGB/predict_analyse_file/20241105_351_1000_analyse.txt
- # 校准文件保存路径
- calibration_file_path=""
- # 保存模型评估的分析结果
- old_incr_rate_avg=0
- new_incr_rate_avg=0
- top10_msg=""
- calc_model_predict() {
- local count=0
- local max_line=10
- local old_total_diff=0
- local new_total_diff=0
- top10_msg="| CID | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |"
- top10_msg+=" \n| ---- | --------- | -------- |"
- while read -r line && [ ${count} -lt ${max_line} ]; do
- # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
- if [[ "${line}" == *"cid"* ]]; then
- continue
- fi
- read -a numbers <<< "${line}"
- # 分数分别保存
- real_score_map[${numbers[0]}]=${numbers[3]}
- old_score_map[${numbers[0]}]=${numbers[6]}
- new_score_map[${numbers[0]}]=${numbers[7]}
- # 拼接Top10详情的飞书消息
- top10_msg="${top10_msg} \n| ${numbers[0]} | ${numbers[6]} | ${numbers[7]} | "
- # 计算top10相对误差绝对值的均值
- old_abs_score=$( echo "if(${numbers[6]} < 0) -${numbers[6]} else ${numbers[6]}" | bc -l )
- new_abs_score=$( echo "if(${numbers[7]} < 0) -${numbers[7]} else ${numbers[7]}" | bc -l )
- old_total_diff=$( echo "${old_total_diff} + ${old_abs_score}" | bc -l )
- new_total_diff=$( echo "${new_total_diff} + ${new_abs_score}" | bc -l )
- count=$((${count} + 1))
- done < "${predict_analyse_file_path}"
- local return_code=$?
- check_run_status $return_code $step_start_time "计算Top10差异" "计算Top10差异异常"
- old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
- check_run_status $? $step_start_time "计算老模型Top10差异" "计算老模型Top10差异异常"
- new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
- check_run_status $? $step_start_time "计算新模型Top10差异" "计算新模型Top10差异异常"
- echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
- echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
- echo "新老模型分数对比: "
- for cid in "${!new_score_map[@]}"; do
- echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}"
- done
- }
- calc_model_predict
|