01_ad_model_update.sh 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. #!/bin/sh
  2. set -x
  3. export PATH=$SPARK_HOME/bin:$PATH
  4. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  5. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  6. sh_path=$(cd $(dirname $0); pwd)
  7. source ${sh_path}/00_common.sh
  8. source /root/anaconda3/bin/activate py37
  9. # 全局常量
  10. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  11. TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4
  12. BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4
  13. TABLE=alg_recsys_ad_sample_all
  14. # 特征文件名
  15. feature_file=20240703_ad_feature_name.txt
  16. # 模型本地临时保存路径
  17. model_local_home=/root/zhaohp/XGB/
  18. # 模型HDFS保存路径,测试时修改为其他路径,避免影响线上
  19. MODEL_PATH=/dw/recommend/model/35_ad_model_test
  20. # 预测结果保存路径,测试时修改为其他路径,避免影响线上
  21. PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data_test
  22. # 模型OSS保存路径,测试时修改为其他路径,避免影响线上
  23. MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/model/
  24. # 线上模型名,测试时修改为其他模型名,避免影响线上
  25. model_name=model_xgb_351_1000_v2_test
  26. # 本地保存HDFS模型路径文件,测试时修改为其他模型名,避免影响线上
  27. model_path_file=${model_local_home}/online_model_path_test.txt
  28. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  29. # 训练用的数据路径
  30. train_data_path=""
  31. # 评估用的数据路径
  32. predict_date_path=""
  33. #评估结果保存路径
  34. new_model_predict_result_path=""
  35. # 模型保存路径
  36. model_save_path=""
  37. # 任务开始时间
  38. start_time=$(date +%s)
  39. # 线上模型在HDFS中的路径
  40. online_model_path=`cat ${model_path_file}`
  41. # 评测结果保存路径,后续需要根据此文件评估是否要更新模型
  42. predict_analyse_file_path=""
  43. # 保存模型评估的分析结果
  44. old_incr_rate_avg=0
  45. new_incr_rate_avg=0
  46. old_incr_rate_list=""
  47. new_incr_rate_list=""
  48. # 校验命令的退出码
  49. check_run_status() {
  50. local status=$1
  51. local step_start_time=$2
  52. local step_name=$3
  53. local step_end_time=$(date +%s)
  54. local step_elapsed=$(($step_end_time - $step_start_time))
  55. if [ $status -ne 0 ]; then
  56. echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
  57. local elapsed=$(($step_end_time - $start_time))
  58. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  59. exit 1
  60. else
  61. echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
  62. fi
  63. }
  64. init() {
  65. declare -a date_keys=()
  66. local count=1
  67. local current_data="$(date -d '2 days ago' +%Y%m%d)"
  68. # 循环获取前 n 天的非节日日期
  69. while [[ $count -lt 7 ]]; do
  70. date_key=$(date -d "$current_data" +%Y%m%d)
  71. # 判断是否是节日,并拼接训练数据路径
  72. if [ $(is_not_holidays $date_key) -eq 1 ]; then
  73. # 将 date_key 放入数组
  74. date_keys+=("$date_key")
  75. if [[ -z ${train_data_path} ]]; then
  76. train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
  77. else
  78. train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
  79. fi
  80. count=$((count + 1))
  81. else
  82. echo "日期: ${date_key}是节日,跳过"
  83. fi
  84. current_data=$(date -d "$current_data -1 day" +%Y%m%d)
  85. done
  86. last_index=$((${#date_keys[@]} - 1))
  87. train_first_day=${date_keys[$last_index]}
  88. train_last_day=${date_keys[0]}
  89. model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
  90. predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
  91. new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${train_first_day: -4}_${train_last_day: -4}
  92. online_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000_${online_model_path: -9}
  93. predict_analyse_file_path=${model_local_home}/predict_analyse_file/${today_early_1}_351_1000_analyse.txt
  94. echo "init param train_data_path: ${train_data_path}"
  95. echo "init param predict_date_path: ${predict_date_path}"
  96. echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
  97. echo "init param online_model_predict_result_path: ${online_model_predict_result_path}"
  98. echo "init param model_save_path: ${model_save_path}"
  99. echo "init param online_model_path: ${online_model_path}"
  100. echo "init param feature_file: ${feature_file}"
  101. echo "init param model_name: ${model_name}"
  102. echo "init param model_local_home: ${model_local_home}"
  103. echo "init param model_oss_path: ${MODEL_OSS_PATH}"
  104. echo "init param predict_analyse_file_path: ${predict_analyse_file_path}"
  105. echo "当前Python环境安装的Python版本: $(python --version)"
  106. echo "当前Python环境安装的三方包: $(python -m pip list)"
  107. }
  108. # 校验大数据任务是否执行完成
  109. check_ad_hive() {
  110. local step_start_time=$(date +%s)
  111. local max_hour=05
  112. local max_minute=30
  113. local elapsed=0
  114. while true; do
  115. local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
  116. elapsed=$(($(date +%s) - $step_start_time))
  117. if [ "$python_return_code" -eq 0 ]; then
  118. break
  119. fi
  120. echo "Python程序返回非0值,等待五分钟后再次调用。"
  121. sleep 300
  122. local current_hour=$(date +%H)
  123. local current_minute=$(date +%M)
  124. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  125. local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
  126. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
  127. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  128. exit 1
  129. fi
  130. done
  131. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  132. }
  133. origin_data() {
  134. (
  135. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  136. make_origin_data
  137. )
  138. }
  139. bucket_feature() {
  140. (
  141. source ${sh_path}/25_xgb_make_data_origin_bucket.sh
  142. make_bucket_feature
  143. )
  144. }
  145. xgb_train() {
  146. local step_start_time=$(date +%s)
  147. /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  148. --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20240808 \
  149. --master yarn --driver-memory 6G --executor-memory 9G --executor-cores 1 --num-executors 31 \
  150. --conf spark.yarn.executor.memoryoverhead=1000 \
  151. --conf spark.shuffle.service.enabled=true \
  152. --conf spark.shuffle.service.port=7337 \
  153. --conf spark.shuffle.consolidateFiles=true \
  154. --conf spark.shuffle.manager=sort \
  155. --conf spark.storage.memoryFraction=0.4 \
  156. --conf spark.shuffle.memoryFraction=0.5 \
  157. --conf spark.default.parallelism=200 \
  158. /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  159. featureFile:20240703_ad_feature_name.txt \
  160. trainPath:${train_data_path} \
  161. testPath:${predict_date_path} \
  162. savePath:${new_model_predict_result_path} \
  163. modelPath:${model_save_path} \
  164. eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
  165. local return_code=$?
  166. check_run_status $return_code $step_start_time "XGB模型训练任务"
  167. }
  168. calc_model_predict() {
  169. local count=0
  170. local max_line=10
  171. local old_total_diff=0
  172. local new_total_diff=0
  173. while read -r line && [ ${count} -lt ${max_line} ]; do
  174. # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑
  175. if [[ "${line}" == *"cid"* ]]; then
  176. continue
  177. fi
  178. read -a numbers <<< "${line}"
  179. if [[ -z ${old_diff_abs} ]];then
  180. old_incr_rate_list="${numbers[6]}"
  181. new_incr_rate_list="${numbers[7]}"
  182. else
  183. old_incr_rate_list="${old_incr_rate_list};${numbers[6]}"
  184. new_incr_rate_list="${new_incr_rate_list};${numbers[7]}"
  185. fi
  186. old_total_diff=$( echo "${old_total_diff} + ${numbers[6]}" | bc -l )
  187. new_total_diff=$( echo "${new_total_diff} + ${numbers[7]}" | bc -l )
  188. count=$((${count} + 1))
  189. done < "${predict_analyse_file_path}"
  190. local return_code=$?
  191. check_run_status $return_code $step_start_time "计算Top10差异"
  192. old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
  193. return_code=$?
  194. check_run_status $return_code $step_start_time "计算老模型Top10差异"
  195. new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
  196. return_code=$?
  197. check_run_status $return_code $step_start_time "计算新模型Top10差异"
  198. echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
  199. echo "老模型Top10差异列表: ${old_incr_rate_list}"
  200. echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
  201. echo "新模型Top10差异列表: ${new_incr_rate_list}"
  202. }
  203. model_predict() {
  204. # 线上模型评估最新的数据
  205. local step_start_time=$(date +%s)
  206. # /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
  207. # --class com.tzld.piaoquan.recommend.model.pred_01_xgb_ad_hdfsfile_20240813 \
  208. # --master yarn --driver-memory 1G --executor-memory 1G --executor-cores 1 --num-executors 30 \
  209. # --conf spark.yarn.executor.memoryoverhead=1024 \
  210. # --conf spark.shuffle.service.enabled=true \
  211. # --conf spark.shuffle.service.port=7337 \
  212. # --conf spark.shuffle.consolidateFiles=true \
  213. # --conf spark.shuffle.manager=sort \
  214. # --conf spark.storage.memoryFraction=0.4 \
  215. # --conf spark.shuffle.memoryFraction=0.5 \
  216. # --conf spark.default.parallelism=200 \
  217. # /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
  218. # featureFile:20240703_ad_feature_name.txt \
  219. # testPath:${predict_date_path} \
  220. # savePath:${online_model_predict_result_path} \
  221. # modelPath:${online_model_path}
  222. # local return_code=$?
  223. # check_run_status $return_code $step_start_time "线上模型评估${predict_date_path: -8}的数据"
  224. # 结果分析
  225. # local python_return_code=$(python ${sh_path}/model_predict_analyse.py -p ${online_model_predict_result_path} ${new_model_predict_result_path} -f ${predict_analyse_file_path})
  226. # check_run_status $python_return_code $step_start_time "线上模型评估${predict_date_path: -8}的数据"
  227. calc_model_predict
  228. if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then
  229. check_run_status 1 $step_start_time "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  230. echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
  231. exit 1
  232. fi
  233. }
  234. model_upload_oss() {
  235. (
  236. local step_start_time=$(date +%s)
  237. cd ${model_local_home}
  238. ${HADOOP} fs -get ${model_save_path} ${model_name}
  239. if [ ! -d ${model_name} ]; then
  240. echo "从HDFS下载模型失败"
  241. check_run_status 1 $step_start_time "HDFS下载模型任务"
  242. exit 1
  243. fi
  244. tar -czvf ${model_name}.tar.gz -C ${model_name} .
  245. rm -rf ${model_name}.tar.gz.crc
  246. ${HADOOP} fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz
  247. ${HADOOP} fs -put ${model_name}.tar.gz ${MODEL_OSS_PATH}
  248. local return_code=$?
  249. check_run_status $return_code $step_start_time "模型上传OSS任务"
  250. )
  251. local return_code=$?
  252. check_run_status $return_code $step_start_time "模型上传OSS任务"
  253. echo ${model_save_path} > ${model_path_file}
  254. rm -f ./${model_name}.tar.gz
  255. rm -rf ./${model_name}
  256. local step_end_time=$(date +%s)
  257. local elapsed=$(($step_end_time - $start_time))
  258. echo -e "$LOG_PREFIX -- 模型更新完成 -- 模型更新成功: 耗时 $elapsed"
  259. local msg="\n\t - 广告模型文件更新完成 \n\t - 前一天线上模型全天Top差异平均值: ${old_incr_rate_avg} \n\t - 前一天线上模型全天Top差异: ${old_incr_rate_list} \n\t - 前一天新模型全天Top10差异平均值: ${new_incr_rate_avg} \n\t - 前一天新模型全天Top差异: ${new_incr_rate_list} \n\t - 模型上传路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
  260. /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg ${msg} --start "${start_time}" --elapsed "${elapsed}"
  261. }
  262. # 主方法
  263. main() {
  264. init
  265. # check_ad_hive
  266. # origin_data
  267. # bucket_feature
  268. # xgb_train
  269. model_predict
  270. model_upload_oss
  271. }
  272. main