model_predict_analyse.py 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. import argparse
  2. import gzip
  3. import os.path
  4. from collections import OrderedDict
  5. import pandas as pd
  6. from hdfs import InsecureClient
  7. client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
  8. SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_score_calibration_file")
  9. PREDICT_CACHE_PATH = os.environ.get("PREDICT_CACHE_PATH", "/root/zhaohp/XGB/predict_cache")
  10. def read_predict_from_local_txt(txt_file) -> list:
  11. result = []
  12. with open(txt_file, "r") as f:
  13. for line in f.readlines():
  14. sp = line.replace("\n", "").split("\t")
  15. if len(sp) == 4:
  16. label = int(sp[0])
  17. cid = sp[3].split("_")[0]
  18. score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
  19. result.append({
  20. "label": label,
  21. "cid": cid,
  22. "score": score
  23. })
  24. return result
  25. def read_predict_from_hdfs(hdfs_path: str) -> list:
  26. if not hdfs_path.endswith("/"):
  27. hdfs_path += "/"
  28. result = []
  29. for file in client.list(hdfs_path):
  30. with client.read(hdfs_path + file) as reader:
  31. with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
  32. for line in gz_file.read().decode("utf-8").split("\n"):
  33. split = line.split("\t")
  34. if len(split) == 4:
  35. cid = split[3].split("_")[0]
  36. label = int(split[0])
  37. score = float(split[2].replace("[", "").replace("]", "").split(",")[1])
  38. result.append({
  39. "cid": cid,
  40. "label": label,
  41. "score": score
  42. })
  43. return result
  44. def _segment_v1(scores, step):
  45. bins = []
  46. for i in range(0, len(scores), int((len(scores) / step))):
  47. if i == 0:
  48. bins.append(0)
  49. else:
  50. bins.append(scores[i])
  51. bins.append(1)
  52. return list(OrderedDict.fromkeys(bins))
  53. def segment_calc_diff_rate_by_score(df: pd.DataFrame, segment_file_path: str, step=100) -> [pd.DataFrame, pd.DataFrame]:
  54. sored_df = df.sort_values(by=['score'])
  55. # 评估分数分段
  56. scores = sored_df['score'].values
  57. bins = _segment_v1(scores, step)
  58. # 等分分桶
  59. # split_indices = np.array_split(np.arange(len(scores)), step)
  60. # bins = [scores[index[0]] for index in split_indices] + [scores[split_indices[-1][-1]]]
  61. sored_df['score_segment'] = pd.cut(sored_df['score'], bins=bins)
  62. # 计算分段内分数的差异
  63. group_df = sored_df.groupby("score_segment", observed=True).agg(
  64. segment_label_sum=('label', 'sum'),
  65. segment_label_cnt=('label', 'count'),
  66. segment_score_avg=('score', 'mean'),
  67. ).reset_index()
  68. group_df['segment_true_score'] = group_df['segment_label_sum'] / group_df['segment_label_cnt']
  69. group_df['segment_diff_rate'] = (group_df['segment_score_avg'] / group_df['segment_true_score'] - 1).mask(group_df['segment_true_score'] == 0, 0)
  70. # 完整的分段文件保存
  71. csv_data = group_df.to_csv(sep="\t", index=False)
  72. with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
  73. writer.write(csv_data)
  74. filtered_df = group_df[(abs(group_df['segment_diff_rate']) >= 0.2) & (group_df['segment_label_cnt'] >= 1000)]
  75. filtered_df = filtered_df[['score_segment', 'segment_diff_rate']]
  76. # 每条曝光数据添加对应分数的diff
  77. merged_df = pd.merge(sored_df, filtered_df, on="score_segment", how="left")
  78. merged_df['segment_diff_rate'] = merged_df['segment_diff_rate'].fillna(0)
  79. return merged_df, filtered_df
  80. def read_and_calibration_predict(predict_path: str, step=100) -> [pd.DataFrame, pd.DataFrame, pd.DataFrame]:
  81. """
  82. 读取评估结果,并进行校准
  83. """
  84. # 本地调试使用
  85. # predicts = read_predict_from_local_txt(predict_path)
  86. predicts = read_predict_from_hdfs(predict_path)
  87. df = pd.DataFrame(predicts)
  88. # 模型分分段计算与真实ctcvr的dff_rate
  89. predict_basename = os.path.basename(predict_path)
  90. if predict_basename.endswith("/"):
  91. predict_basename = predict_basename[:-1]
  92. df, segment_df = segment_calc_diff_rate_by_score(df, segment_file_path=f"{SEGMENT_BASE_PATH}/{predict_basename}.txt", step=100)
  93. # 生成校准后的分数
  94. df['score_2'] = df['score'] / (1 + df['segment_diff_rate'])
  95. # 按CID统计真实ctcvr和校准前后的平均模型分
  96. grouped_df = df.groupby("cid").agg(
  97. view=('cid', 'size'),
  98. conv=('label', 'sum'),
  99. score_avg=('score', lambda x: round(x.mean(), 6)),
  100. score_2_avg=('score_2', lambda x: round(x.mean(), 6)),
  101. ).reset_index()
  102. grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
  103. return df, grouped_df, segment_df
  104. def predict_local_save_for_auc(old_df: pd.DataFrame, new_df: pd.DataFrame):
  105. """
  106. 本地保存一份评估结果, 计算AUC使用
  107. """
  108. d = {"old": old_df, "new": new_df}
  109. for key in d:
  110. df = d[key][['label', "score"]]
  111. df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_1.txt", sep="\t", index=False, header=False)
  112. df = d[key][['label', "score_2"]]
  113. df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_2.txt", sep="\t", index=False, header=False)
  114. def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
  115. old_df, old_group_df, old_segment_df = read_and_calibration_predict(old_predict_path)
  116. new_df, new_group_df, new_segment_df = read_and_calibration_predict(new_predict_path)
  117. predict_local_save_for_auc(old_df, new_df)
  118. # 分段文件保存, 此处保留的最后使用的分段文件,不是所有的分段
  119. new_segment_df.to_csv(calibration_file, sep='\t', index=False, header=False)
  120. # 字段重命名,和列过滤
  121. old_group_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg'}, inplace=True)
  122. new_group_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg'}, inplace=True)
  123. old_group_df = old_group_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg']]
  124. new_group_df = new_group_df[['cid', 'new_score_avg', 'new_score_2_avg']]
  125. merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
  126. # 计算与真实ctcvr的差异值
  127. merged["(new-true)/true"] = (merged['new_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  128. merged["(old-true)/true"] = (merged['old_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  129. # 计算校准后的模型分与ctcvr的差异值
  130. merged["(new2-true)/true"] = (merged['new_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  131. merged["(old2-true)/true"] = (merged['old_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
  132. # 按照曝光排序,写入本地文件
  133. merged = merged.sort_values(by=['view'], ascending=False)
  134. merged = merged[[
  135. 'cid', 'view', "conv", "true_ctcvr",
  136. "old_score_avg", "new_score_avg", "(old-true)/true", "(new-true)/true",
  137. "old_score_2_avg", "new_score_2_avg", "(old2-true)/true", "(new2-true)/true",
  138. ]]
  139. # 根据文件名保存不同的格式
  140. if analyse_file.endswith(".csv"):
  141. merged.to_csv(analyse_file, index=False)
  142. else:
  143. with open(analyse_file, "w") as writer:
  144. writer.write(merged.to_string(index=False))
  145. print("0")
  146. if __name__ == '__main__':
  147. parser = argparse.ArgumentParser(description="model_predict_analyse.py")
  148. parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
  149. parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
  150. parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
  151. parser.add_argument("-cf", "--calibration_file", required=True, help="线上使用的segment文件保存路径")
  152. args = parser.parse_args()
  153. _main(
  154. old_predict_path=args.old_predict_path,
  155. new_predict_path=args.new_predict_path,
  156. calibration_file=args.calibration_file,
  157. analyse_file=args.analyse_file
  158. )