01_ad_model_update_everyday.sh 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274
  1. #!/bin/sh
  2. set -x
  3. # 0 全局变量/参数
  4. originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto/
  5. bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_v3_auto/
  6. model_name=model_bkb8_v3
  7. today="$(date +%Y%m%d)"
  8. today_early_1="$(date -d '1 days ago' +%Y%m%d)"
  9. today_early_2="$(date -d '2 days ago' +%Y%m%d)"
  10. LAST_MODEL_HOME=/root/zhaohp/model_online
  11. MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model
  12. PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
  13. HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
  14. FM_HOME=/root/sunmingze/alphaFM
  15. OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
  16. max_hour=17
  17. max_minute=00
  18. export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
  19. export PATH=$SPARK_HOME/bin:$PATH
  20. export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
  21. export JAVA_HOME=/usr/lib/jvm/java-1.8.0
  22. start_time=$(date "+%Y-%m-%d %H:%M:%S")
  23. elapsed=0
  24. LOG_PREFIX=广告模型自动更新任务
  25. # 1 判断依赖的数据表是否生产完成
  26. source /root/anaconda3/bin/activate py37
  27. while true; do
  28. python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
  29. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  30. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  31. if [ "$python_return_code" -eq 0 ]; then
  32. break
  33. fi
  34. echo "Python程序返回非0值,等待五分钟后再次调用。"
  35. sleep 300
  36. current_hour=$(date +%H)
  37. current_minute=$(date +%M)
  38. if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
  39. msg="大数据数据生产校验失败, 分区: ${today}10"
  40. echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
  41. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  42. exit 1
  43. fi
  44. done
  45. echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
  46. # 2 原始特征生成
  47. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  48. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  49. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
  50. --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
  51. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  52. tablePart:64 repartition:16 \
  53. beginStr:${today_early_1}00 endStr:${today}10 \
  54. savePath:${originDataSavePath} \
  55. table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
  56. idDefaultValue:0.01
  57. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  58. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  59. if [ $? -ne 0 ]; then
  60. msg="Spark原始样本生产任务执行失败"
  61. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  62. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  63. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  64. exit 1
  65. fi
  66. echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $step_elapsed"
  67. # 3 特征分桶
  68. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  69. /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
  70. --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \
  71. --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
  72. ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
  73. beginStr:${today_early_1} endStr:${today} repartition:100 \
  74. filterNames:adid_,targeting_conversion_ \
  75. readPath:${originDataSavePath} \
  76. savePath:${bucketFeatureSavePath}
  77. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  78. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  79. if [ $? -ne 0 ]; then
  80. msg="Spark特征分桶处理任务执行失败"
  81. echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $step_elapsed"
  82. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  83. /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
  84. exit 1
  85. fi
  86. echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $step_elapsed"
  87. # 4 模型训练
  88. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  89. $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_train -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
  90. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  91. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  92. if [ $? -ne 0 ]; then
  93. msg "模型训练失败"
  94. echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $step_elapsed"
  95. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  96. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  97. exit 1
  98. fi
  99. echo "$LOG_PREFIX -- 原始样本生产 -- 模型训练完成: 耗时 $step_elapsed"
  100. # 5 对比AUC
  101. step5_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  102. # 5.1 用昨天生成的模型,计算昨天一天的AUC
  103. # $HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  104. # 5.2 计算线上模型的AUC
  105. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  106. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
  107. online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
  108. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  109. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  110. if [ $? -ne 0 ]; then
  111. msg="线上模型AUC计算失败"
  112. echo "$LOG_PREFIX -- 线上模型AUC计算 -- $msg: 耗时 $step_elapsed"
  113. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  114. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  115. exit 1
  116. fi
  117. echo "$LOG_PREFIX -- 线上模型AUC计算 -- 线上模型AUC计算完成: 耗时 $step_elapsed"
  118. # 5.3 计算新模型的AUC
  119. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  120. $HADOOP fs -text ${bucketFeatureSavePath}/${today}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_1}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
  121. new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
  122. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  123. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  124. if [ $? -ne 0 ]; then
  125. msg="新模型AUC计算失败"
  126. echo "$LOG_PREFIX -- 新模型AUC计算 -- $msg: 耗时 $step_elapsed"
  127. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  128. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  129. exit 1
  130. fi
  131. echo "$LOG_PREFIX -- 新模型AUC计算 -- 新模型AUC计算完成: 耗时 $step_elapsed"
  132. echo "AUC比对: 线上模型的AUC: ${online_auc}, 新模型的AUC: ${new_auc}"
  133. # 5.4 计算新模型与线上模型的AUC差值的绝对值
  134. auc_diff=$(echo "$online_auc - $new_auc" | bc -l)
  135. auc_diff_abs=$(echo "sqrt(($auc_diff)^2)" | bc -l)
  136. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  137. step5_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step5_start_time")))
  138. # 5.5 如果差值的绝对值小于0.005且新模型的AUC大于0.73, 则更新模型
  139. if (( $(echo "${online_auc} <= ${new_auc}" | bc -l) )); then
  140. msg="新模型优于线上模型 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc}"
  141. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  142. elif (( $(echo "$auc_diff_abs < 0.005" | bc -l) )) && (( $(echo "$new_auc >= 0.73" | bc -l) )); then
  143. msg="新模型与线上模型差值小于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  144. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  145. else
  146. msg="新模型与线上模型差值大于等于阈值0.005 \n\t线上模型AUC: ${online_auc} \n\t新模型AUC: ${new_auc} \n\t差值为: $auc_diff_abs"
  147. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step5_elapsed"
  148. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  149. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  150. exit 1
  151. fi
  152. # 6 模型格式转换
  153. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  154. change_txt_path=${MODEL_PATH}/${model_name}_${today_early_1}_change.txt
  155. cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt |
  156. awk -F " " '{
  157. if (NR == 1) {
  158. print $1"\t"$2
  159. } else {
  160. split($0, fields, " ");
  161. OFS="\t";
  162. line=""
  163. for (i = 1; i <= 10 && i <= length(fields); i++) {
  164. line = (line ? line "\t" : "") fields[i];
  165. }
  166. print line
  167. }
  168. }' > "$change_txt_path"
  169. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  170. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  171. if [ $? -ne 0 ]; then
  172. msg="新模型文件格式转换失败"
  173. echo -e "$LOG_PREFIX -- AUC对比 -- $msg: 耗时 $step_elapsed"
  174. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  175. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  176. exit 1
  177. fi
  178. echo -e "$LOG_PREFIX -- 模型文件格式转换 -- 转换后的路径为 [$change_txt_path]: 耗时 $step_elapsed"
  179. # 7 模型文件上传OSS
  180. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  181. online_model_path=${OSS_PATH}/${model_name}.txt
  182. $HADOOP fs -test -e ${online_model_path}
  183. if [ $? -eq 0 ]; then
  184. echo "删除已存在的OSS模型文件"
  185. $HADOOP fs -rm -r -skipTrash ${online_model_path}
  186. fi
  187. $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path}
  188. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  189. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  190. if [ $? -ne 0 ]; then
  191. msg="广告模型文件至OSS失败, OSS模型文件路径: $online_model_path"
  192. echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- $msg: 耗时 $step_elapsed"
  193. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  194. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  195. exit 1
  196. fi
  197. echo -e "$LOG_PREFIX -- 模型文件推送至OSS -- 广告模型文件至OSS成功, OSS模型文件路径 $online_model_path: 耗时 $step_elapsed"
  198. # 8 本地保存最新的线上使用的模型,用于下一次的AUC验证
  199. step_start_time=$(date "+%Y-%m-%d %H:%M:%S")
  200. cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
  201. cp -f ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${LAST_MODEL_HOME}/model_online.txt
  202. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  203. step_elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$step_start_time")))
  204. if [ $? -ne 0 ]; then
  205. msg="模型备份失败"
  206. echo -e "$LOG_PREFIX -- 模型备份 -- $msg: 耗时 $step_elapsed"
  207. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  208. /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  209. exit 1
  210. fi
  211. echo -e "$LOG_PREFIX -- 模型备份 -- 模型备份完成: 耗时 $step_elapsed"
  212. # 9 任务完成通知
  213. step_end_time=$(date "+%Y-%m-%d %H:%M:%S")
  214. msg="\n\t - 广告模型文件更新完成 \n\t - 新模型AUC: $new_auc \n\t - 线上模型AUC: $online_auc \n\t - AUC差值: $auc_diff_abs \n\t - 模型上传路径: $online_model_path"
  215. echo -e "$LOG_PREFIX -- 模型更新完成 -- $msg: 耗时 $step_elapsed"
  216. elapsed=$(($(date +%s -d "$step_end_time") - $(date +%s -d "$start_time")))
  217. /root/anaconda3/bin/python ad/ad_monitor_util.py --level info --msg "$msg" --start "$start_time" --elapsed "$elapsed"
  218. # 15 15 * * * cd /root/zhaohp/recommend-emr-dataprocess && /bin/sh ./ad/01_ad_model_update_everyday.sh > logs/01_update_eventday_$(date +\%Y-\%m-\%d_\%H-\%M).log 2>&1