#!/bin/sh set -x source /root/anaconda3/bin/activate py37 export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8 export PATH=$SPARK_HOME/bin:$PATH export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf export JAVA_HOME=/usr/lib/jvm/java-1.8.0 # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 & # 原始数据table name table='alg_recsys_sample_all' today="$(date +%Y%m%d)" today_early_3="$(date -d '3 days ago' +%Y%m%d)" #table='alg_recsys_sample_all_test' # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据 begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" beginHhStr=00 endHhStr=23 max_hour=05 max_minute=00 # 各节点产出hdfs文件绝对路径 # 源数据文件 originDataPath=/dw/recommend/model/41_recsys_sample_data/ # 特征值 valueDataPath=/dw/recommend/model/14_feature_data/ # 特征分桶 bucketDataPath=/dw/recommend/model/43_recsys_train_data/ # 模型数据路径 MODEL_PATH=/root/joe/recommend-emr-dataprocess/model # 预测路径 PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict # 历史线上正在使用的模型数据路径 LAST_MODEL_HOME=/root/joe/model_online # 模型数据文件前缀 model_name=model_nba8 # fm模型 FM_HOME=/root/sunmingze/alphaFM/bin # hadoop HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/ echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------根据特征分桶生产重打分特征数据" /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_43_bucketData_20240709 \ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ readPath:${originDataPath} \ savePath:${bucketDataPath} \ beginStr:20240716 endStr:20240722 repartition:500 \ filterNames:XXXXXXXXX \ fileName:20240609_bucket_314.txt \ whatLabel:is_return whatApps:0,4,21,17 if [ $? -ne 0 ]; then echo "Spark特征分桶处理任务执行失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step3训练数据产出\n【是否成功】:error\n【信息】:Spark特征分桶处理任务执行失败" exit 1 else echo "spark特征分桶处理执行成功" fi