#!/bin/sh set -x source /root/anaconda3/bin/activate py37 export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8 export PATH=$SPARK_HOME/bin:$PATH export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf export JAVA_HOME=/usr/lib/jvm/java-1.8.0 # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 & # 原始数据table name table='alg_recsys_sample_all' today="$(date +%Y%m%d)" today_early_3="$(date -d '3 days ago' +%Y%m%d)" #table='alg_recsys_sample_all_test' # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据 begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" beginHhStr=00 endHhStr=23 max_hour=05 max_minute=00 # 各节点产出hdfs文件绝对路径 # 源数据文件 originDataPath=/dw/recommend/model/41_recsys_sample_data/ # 特征值 valueDataPath=/dw/recommend/model/14_feature_data/ # 特征分桶 bucketDataPath=/dw/recommend/model/43_recsys_train_data/ # 模型数据路径 MODEL_PATH=/root/joe/recommend-emr-dataprocess/model # 预测路径 PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict # 历史线上正在使用的模型数据路径 LAST_MODEL_HOME=/root/joe/model_online # 模型数据文件前缀 model_name=model_nba8 # fm模型 FM_HOME=/root/sunmingze/alphaFM/bin # hadoop HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/ cat /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt | awk -F " " '{ if (NR == 1) { print $1"\t"$2 } else { split($0, fields, " "); OFS="\t"; line="" for (i = 1; i <= 10 && i <= length(fields); i++) { line = (line ? line "\t" : "") fields[i]; } print line } }' > /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22_change.txt if [ $? -ne 0 ]; then echo "新模型文件格式转换失败" fi # 4.1.2 模型文件上传OSS online_model_path=${OSS_PATH}/${model_name}.txt $HADOOP fs -test -e ${online_model_path} if [ $? -eq 0 ]; then echo "数据存在, 先删除。" $HADOOP fs -rm -r -skipTrash ${online_model_path} else echo "数据不存在" fi $HADOOP fs -put /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22_change.txt ${online_model_path} if [ $? -eq 0 ]; then echo "推荐模型文件至OSS成功" # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证 cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt cp -f /root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt ${LAST_MODEL_HOME}/model_online.txt if [ $? -ne 0 ]; then echo "模型备份失败" fi /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step模型更新\n【是否成功】:success\n【信息】:已更新/root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt模型}" else echo "推荐模型文件至OSS失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败/root/joe/recommend-emr-dataprocess/model/model_nba8_all_9_22.txt --- ${online_model_path}" fi