#!/bin/sh set -x source /root/anaconda3/bin/activate py37 export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8 export PATH=$SPARK_HOME/bin:$PATH export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf export JAVA_HOME=/usr/lib/jvm/java-1.8.0 # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 & # 原始数据table name table='alg_recsys_sample_all' today="$(date +%Y%m%d)" today_early_3="$(date -d '3 days ago' +%Y%m%d)" #table='alg_recsys_sample_all_test' # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据 begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)" beginHhStr=00 endHhStr=23 max_hour=05 max_minute=00 # 各节点产出hdfs文件绝对路径 # 源数据文件 originDataPath=/dw/recommend/model/13_sample_data/ # 特征值 valueDataPath=/dw/recommend/model/14_feature_data/ # 特征分桶 bucketDataPath=/dw/recommend/model/16_train_data/ # 模型数据路径 MODEL_PATH=/root/joe/recommend-emr-dataprocess/model # 预测路径 PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict # 历史线上正在使用的模型数据路径 LAST_MODEL_HOME=/root/joe/model_online # 模型数据文件前缀 model_name=aka8 # fm模型 FM_HOME=/root/sunmingze/alphaFM/bin # hadoop HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/ # 0 判断上游表是否生产完成,最长等待到max_hour点 # shellcheck disable=SC2154 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}" while true; do python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr}) echo "python 返回值:${python_return_code}" if [ $python_return_code -eq 0 ]; then echo "Python程序返回0,校验存在数据,退出循环。" break fi echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。" sleep 300 current_hour=$(date +%H) current_minute=$(date +%M) # shellcheck disable=SC2039 if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then echo "最长等待时间已到,失败:${current_hour}-${current_minute}" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step0校验是否生产完数据\n【是否成功】:error\n【信息】:最长等待时间已到,失败:${current_hour}-${current_minute}" exit 1 fi done # 1 生产原始数据 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始根据${table}生产原始数据" /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \ --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ tablePart:64 repartition:32 \ beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \ savePath:${originDataPath} \ table:${table} if [ $? -ne 0 ]; then echo "Spark原始样本生产任务执行失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step1根据${table}生产原始数据\n【是否成功】:error\n【信息】:Spark原始样本生产任务执行失败" exit 1 else echo "spark原始样本生产执行成功" fi # 2 特征值拼接 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始特征值拼接" /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \ --master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \ ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ readPath:${originDataPath} \ savePath:${valueDataPath} \ beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000 if [ $? -ne 0 ]; then echo "Spark特征值拼接处理任务执行失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step2特征值拼接\n【是否成功】:error\n【信息】:Spark特征值拼接处理任务执行失败" exit 1 else echo "spark特征值拼接处理执行成功" fi # 3 特征分桶 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------根据特征分桶生产重打分特征数据" /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ ../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ readPath:${valueDataPath} \ savePath:${bucketDataPath} \ beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000 if [ $? -ne 0 ]; then echo "Spark特征分桶处理任务执行失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step3训练数据产出\n【是否成功】:error\n【信息】:Spark特征分桶处理任务执行失败" exit 1 else echo "spark特征分桶处理执行成功" fi # 4 对比AUC 前置对比3日模型数据 与 线上模型数据效果对比,如果3日模型优于线上,更新线上模型 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果" $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt if [ $? -ne 0 ]; then echo "推荐线上模型AUC计算失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败" else $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt if [ $? -ne 0 ]; then echo "推荐新模型AUC计算失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt" else online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC` if [ $? -ne 0 ]; then echo "推荐线上模型AUC计算失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐线上模型AUC计算失败" else new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC` if [ $? -ne 0 ]; then echo "推荐新模型AUC计算失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4新旧模型AUC对比\n【是否成功】:error\n【信息】:推荐新模型AUC计算失败${PREDICT_PATH}/${model_name}_${today}_new.txt" else # 4.1 对比auc数据判断是否更新线上模型 if [ "$online_auc" \< "$new_auc" ]; then echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" # 4.1.1 模型格式转换 cat ${MODEL_PATH}/${model_name}_${today_early_3}.txt | awk -F " " '{ if (NR == 1) { print $1"\t"$2 } else { split($0, fields, " "); OFS="\t"; line="" for (i = 1; i <= 10 && i <= length(fields); i++) { line = (line ? line "\t" : "") fields[i]; } print line } }' > ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt if [ $? -ne 0 ]; then echo "新模型文件格式转换失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型格式转换\n【是否成功】:error\n【信息】:新模型文件格式转换失败${MODEL_PATH}/${model_name}_${today_early_3}.txt" else # 4.1.2 模型文件上传OSS online_model_path=${OSS_PATH}/${model_name}.txt $HADOOP fs -test -e ${online_model_path} if [ $? -eq 0 ]; then echo "数据存在, 先删除。" $HADOOP fs -rm -r -skipTrash ${online_model_path} else echo "数据不存在" fi $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_3}_change.txt ${online_model_path} if [ $? -eq 0 ]; then echo "推荐模型文件至OSS成功" # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证 cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt cp -f ${MODEL_PATH}/${model_name}_${today_early_3}.txt ${LAST_MODEL_HOME}/model_online.txt if [ $? -ne 0 ]; then echo "模型备份失败" fi /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc},已更新${model_name}_${today_early_3}.txt模型}" else echo "推荐模型文件至OSS失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step4模型推送oss\n【是否成功】:error\n【信息】:推荐模型文件至OSS失败${MODEL_PATH}/${model_name}_${today_early_3}_change.txt --- ${online_model_path}" fi fi else echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}" /root/anaconda3/bin/python monitor_util.py --level info --msg "荐模型数据更新 \n【任务名称】:step4模型更新\n【是否成功】:success\n【信息】:新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}}" fi fi fi fi fi # 5 模型训练 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------开始模型训练" $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8 if [ $? -ne 0 ]; then echo "模型训练失败" /root/anaconda3/bin/python monitor_util.py --level error --msg "荐模型数据更新 \n【任务名称】:step5模型训练\n【是否成功】:error\n【信息】:${bucketDataPath}/${begin_early_2_Str}训练失败" fi echo "$(date +%Y-%m-%d_%H-%M-%S)----------step6------------模型训练完成:${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt"