import argparse
import gzip
import os.path
import pandas as pd
from hdfs import InsecureClient
client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_model_attachment/score_calibration_file")
PREDICT_CACHE_PATH = os.environ.get("PREDICT_CACHE_PATH", "/root/zhaohp/XGB/predict_cache")
def parse_predict_line(line: str) -> [bool, dict]:
sp = line.replace("\n", "").split("\t")
if len(sp) == 4:
label = int(sp[0])
cid = sp[3].split("_")[0]
score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
return True, {
"label": label,
"cid": cid,
"score": score
}
return False, {}
def read_predict_file(file_path: str) -> pd.DataFrame:
result = []
if file_path.startswith("/dw"):
if not file_path.endswith("/"):
file_path += "/"
for file in client.list(file_path):
with client.read(file_path + file) as reader:
with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
for line in gz_file.read().decode("utf-8").split("\n"):
b, d = parse_predict_line(line)
if b: result.append(d)
else:
with open(file_path, "r") as f:
for line in f.readlines():
b, d = parse_predict_line(line)
if b: result.append(d)
return pd.DataFrame(result)
def calibration_file_save(df: pd.DataFrame, file_path: str):
if file_path.startswith("/dw"):
# 完整的分段文件保存
with client.write(file_path, encoding='utf-8', overwrite=True) as writer:
writer.write(df.to_csv(sep="\t", index=False))
else:
df.tocsv(file_path, sep="\t", index=False)
def predict_local_save_for_auc(old_df: pd.DataFrame, new_df: pd.DataFrame):
"""
本地保存一份评估结果, 计算AUC使用
"""
d = {"old": old_df, "new": new_df}
for key in d:
df = d[key]
if 'score' in df.columns:
score_df = df[['label', "score"]]
score_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_1.txt", sep="\t", index=False, header=False)
if 'score_2' in df.columns:
score_2_df = d[key][['label', "score_2"]]
score_2_df.to_csv(f"{PREDICT_CACHE_PATH}/{key}_2.txt", sep="\t", index=False, header=False)
def save_full_calibration_file(df: pd.DataFrame, segment_file_path: str):
if segment_file_path.startswith("/dw"):
# 完整的分段文件保存
with client.write(segment_file_path, encoding='utf-8', overwrite=True) as writer:
writer.write(df.to_csv(sep="\t", index=False))
else:
df.to_csv(segment_file_path, sep="\t", index=False)
def get_predict_calibration_file(df: pd.DataFrame, predict_basename: str) -> [pd.DataFrame]:
"""
计算模型分的diff_rate
"""
agg_df = predict_df_agg(df)
agg_df['diff_rate'] = (agg_df['score_avg'] / agg_df['true_ctcvr'] - 1).mask(agg_df['true_ctcvr'] == 0, 0).round(6)
condition = 'view > 1000 and diff_rate >= 0.2'
save_full_calibration_file(agg_df, f"{SEGMENT_BASE_PATH}/{predict_basename}.txt")
calibration = agg_df[(agg_df['view'] > 1000) & ((agg_df['diff_rate'] >= 0.2) | (agg_df['diff_rate'] <= 0.2)) & agg_df['diff_rate'] != 0]
return calibration
def get_predict_basename(predict_path) -> [str]:
"""
获取文件路径的最后一部分,作为与模型关联的文件名
"""
predict_basename = os.path.basename(predict_path)
if predict_basename.endswith("/"):
predict_basename = predict_basename[:-1]
return predict_basename
def calc_calibration_score2(df: pd.DataFrame, calibration_df: pd.DataFrame) -> [pd.DataFrame]:
calibration_df = calibration_df[['cid', 'diff_rate']]
df = pd.merge(df, calibration_df, on='cid', how='left').fillna(0)
df['score_2'] = df['score'] / (1 + df['diff_rate'])
return df
def predict_df_agg(df: pd.DataFrame) -> [pd.DataFrame]:
# 基础聚合操作
df['abs_error'] = abs(df['label'] - df['score'])
agg_operations = {
'view': ('cid', 'size'),
'conv': ('label', 'sum'),
'score_avg': ('score', lambda x: round(x.mean(), 6)),
'mae': ('abs_error', lambda x: round(x.mean(), 6)),
}
# 如果存在 score_2 列,则增加相关聚合
if "score_2" in df.columns:
agg_operations['score_2_avg'] = ('score_2', lambda x: round(x.mean(), 6))
grouped_df = df.groupby("cid").agg(**agg_operations).reset_index()
grouped_df['true_ctcvr'] = grouped_df['conv'] / grouped_df['view']
return grouped_df
def _main(old_predict_path: str, new_predict_path: str, calibration_file: str, analyse_file: str):
old_df = read_predict_file(old_predict_path)
new_df = read_predict_file(new_predict_path)
old_calibration_df = get_predict_calibration_file(old_df, get_predict_basename(old_predict_path))
old_df = calc_calibration_score2(old_df, old_calibration_df)
new_calibration_df = get_predict_calibration_file(new_df, get_predict_basename(new_predict_path))
new_df = calc_calibration_score2(new_df, new_calibration_df)
# 本地保存label、score以及校准后的score,用于计算AUC等信息
predict_local_save_for_auc(old_df, new_df)
# 新模型校准文件保存本地,用于同步OSS
new_calibration_df[['cid', 'diff_rate']].to_csv(calibration_file, sep="\t", index=False, header=False)
old_agg_df = predict_df_agg(old_df)
new_agg_df = predict_df_agg(new_df)
# 字段重命名,和列过滤
old_agg_df.rename(columns={'score_avg': 'old_score_avg', 'score_2_avg': 'old_score_2_avg', 'mae': 'old_mae'}, inplace=True)
new_agg_df.rename(columns={'score_avg': 'new_score_avg', 'score_2_avg': 'new_score_2_avg', 'mae': 'new_mae'}, inplace=True)
old_group_df = old_agg_df[['cid', 'view', 'conv', 'true_ctcvr', 'old_score_avg', 'old_score_2_avg', 'old_mae']]
new_group_df = new_agg_df[['cid', 'new_score_avg', 'new_score_2_avg', 'new_mae']]
merged = pd.merge(old_group_df, new_group_df, on='cid', how='left')
# 计算与真实ctcvr的差异值
merged["(new-true)/true"] = (merged['new_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
merged["(old-true)/true"] = (merged['old_score_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
# 计算校准后的模型分与ctcvr的差异值
merged["(new2-true)/true"] = (merged['new_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
merged["(old2-true)/true"] = (merged['old_score_2_avg'] / merged['true_ctcvr'] - 1).mask(merged['true_ctcvr'] == 0, 0)
# 按照曝光排序,写入本地文件
merged = merged.sort_values(by=['view'], ascending=False)
merged = merged[[
'cid', 'view', "conv", "true_ctcvr",
"old_score_avg", "new_score_avg", "(old-true)/true", "(new-true)/true",
"old_score_2_avg", "new_score_2_avg", "(old2-true)/true", "(new2-true)/true",
'old_mae', 'new_mae'
]]
# 根据文件名保存不同的格式
if analyse_file.endswith(".csv"):
merged.to_csv(analyse_file, index=False)
else:
with open(analyse_file, "w") as writer:
writer.write(merged.to_string(index=False))
print("0")
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="model_predict_analyse_20241101.py")
parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
parser.add_argument("-af", "--analyse_file", required=True, help="最后计算结果的保存路径")
parser.add_argument("-cf", "--calibration_file", required=True, help="线上使用的segment文件保存路径")
args = parser.parse_args()
_main(
old_predict_path=args.old_predict_path,
new_predict_path=args.new_predict_path,
calibration_file=args.calibration_file,
analyse_file=args.analyse_file
)