#!/bin/sh set -x sh_path=$(cd $(dirname $0); pwd) source /root/anaconda3/bin/activate py37 # 模型保存路径 model_save_path=/dw/recommend/model/35_ad_model/model_xgb_351_1000_v2_1009_1015 MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/ model_name=model_xgb_351_1000_v2 predict_analyse_file_path=/root/zhaohp/XGB/predict_analyse_file/20241014_351_1000_analyse.txt start_time=$(date +%s) # 保存模型评估的分析结果 old_incr_rate_avg=0 new_incr_rate_avg=0 declare -A old_score_map declare -A new_score_map count=0 max_line=10 old_total_diff=0 new_total_diff=0 while read -r line && [ ${count} -lt ${max_line} ]; do # 使用 ! 取反判断,只有当行中不包含 "cid" 时才执行继续的逻辑 if [[ "${line}" == *"cid"* ]]; then continue fi read -a numbers <<< "${line}" # 分数分别保存 old_score_map[${numbers[0]}]=${numbers[6]} new_score_map[${numbers[0]}]=${numbers[7]} old_total_diff=$( echo "${old_total_diff} + ${numbers[6]}" | bc -l ) new_total_diff=$( echo "${new_total_diff} + ${numbers[7]}" | bc -l ) count=$((${count} + 1)) done < "${predict_analyse_file_path}" old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l ) new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l ) echo "老模型Top10差异平均值: ${old_incr_rate_avg}" echo "新模型Top10差异平均值: ${new_incr_rate_avg}" echo "新老模型分数对比: " for cid in "${!new_score_map[@]}"; do echo "\t CID: $cid, 老模型分数: ${old_score_map[$cid]}, 新模型分数: ${new_score_map[$cid]}" done msg=" 广告模型文件更新完成" msg+="\n\t - 老模型Top10差异平均值: ${old_incr_rate_avg}" msg+="\n\t - 新模型Top10差异平均值: ${new_incr_rate_avg}" msg+="\n\t - 模型在HDFS中的路径: ${model_save_path}" msg+="\n\t - 模型上传路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz" top10_msg = "| CID | 老模型 | 新模型 | \n| ---- | -------- | -------- | " for cid in "${!new_score_map[@]}"; do top10_msg="${top10_msg} \n| ${cid} | ${old_score_map[$cid]} | ${new_score_map[$cid]} | " done /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "10000" --top10 "${top10_msg}"