import argparse
import gzip
import os.path
import pandas as pd
import numpy as np
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from hdfs import InsecureClient
client = InsecureClient("http://master-1-1.c-7f31a3eea195cb73.cn-hangzhou.emr.aliyuncs.com:9870", user="spark")
SEGMENT_BASE_PATH = os.environ.get("SEGMENT_BASE_PATH", "/dw/recommend/model/36_model_attachment/score_calibration_file")
PREDICT_CACHE_PATH = os.environ.get("PREDICT_CACHE_PATH", "/root/zhaohp/XGB/predict_cache")
def parse_predict_line(line: str) -> [bool, dict]:
sp = line.replace("\n", "").split("\t")
if len(sp) == 4:
label = int(sp[0])
cid = sp[3].split("_")[0]
score = float(sp[2].replace("[", "").replace("]", "").split(",")[1])
return True, {
"label": label,
"cid": cid,
"score": score
}
return False, {}
def read_predict_file(file_path: str) -> pd.DataFrame:
result = []
if file_path.startswith("/dw"):
if not file_path.endswith("/"):
file_path += "/"
for file in client.list(file_path):
with client.read(file_path + file) as reader:
with gzip.GzipFile(fileobj=reader, mode="rb") as gz_file:
for line in gz_file.read().decode("utf-8").split("\n"):
b, d = parse_predict_line(line)
if b: result.append(d)
else:
with open(file_path, "r") as f:
for line in f.readlines():
b, d = parse_predict_line(line)
if b: result.append(d)
return pd.DataFrame(result)
def _main(old_predict_path: str, new_predict_path: str, output_path: str):
old_df = read_predict_file(old_predict_path)
new_df = read_predict_file(new_predict_path)
num_bins = 50
old_df['p_bin'], _ = pd.qcut(old_df['score'], q=num_bins, duplicates='drop', retbins=True)
new_df['p_bin'], _ = pd.qcut(new_df['score'], q=num_bins, duplicates='drop', retbins=True)
quantile_data_old = old_df.groupby('p_bin').agg(
mean_p=('score', 'mean'),
mean_y=('label', 'mean')
).reset_index()
quantile_data_new = new_df.groupby('p_bin').agg(
mean_p=('score', 'mean'),
mean_y=('label', 'mean')
).reset_index()
predicted_quantiles_old = quantile_data_old['mean_p']
actual_quantiles_old = quantile_data_old['mean_y']
predicted_quantiles_new = quantile_data_new['mean_p']
actual_quantiles_new = quantile_data_new['mean_y']
plt.figure(figsize=(6, 6))
plt.plot(predicted_quantiles_old, actual_quantiles_old, ms=3, ls='-', color='blue', label='old')
plt.plot(predicted_quantiles_new, actual_quantiles_new, ms=3, ls='-', color='red', label='new')
plt.plot([0, 1], [0, 1], color='gray', linestyle='--', label='Ideal Line')
plt.xlim(0, 0.02)
plt.ylim(0, 0.02)
plt.xlabel('Predicted pCTR')
plt.ylabel('Actual CTR')
plt.title('Q-Q Plot for pCTR Calibration')
plt.legend()
plt.grid(True)
plt.savefig(output_path, dpi=300, bbox_inches='tight')
plt.close()
if __name__ == '__main__':
parser = argparse.ArgumentParser(description=__file__)
parser.add_argument("-op", "--old_predict_path", required=True, help="老模型评估结果")
parser.add_argument("-np", "--new_predict_path", required=True, help="新模型评估结果")
parser.add_argument('--output', required=True)
args = parser.parse_args()
_main(
old_predict_path=args.old_predict_path,
new_predict_path=args.new_predict_path,
output_path=args.output
)