#!/bin/sh set -x export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8 export PATH=$SPARK_HOME/bin:$PATH export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf export JAVA_HOME=/usr/lib/jvm/java-1.8.0 source /root/anaconda3/bin/activate py37 # 全局常量 originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto_test bucketFeatureSavePathHome=/dw/recommend/model/33_ad_train_data_v3_auto_test model_name=model_bkb8_v3_test LAST_MODEL_HOME=/root/zhaohp/model_online_test MODEL_HOME=/root/zhaohp/recommend-emr-dataprocess/model OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop FM_HOME=/root/sunmingze/alphaFM today="$(date +%Y%m%d)" today_early_1="$(date -d '1 days ago' +%Y%m%d)" start_time=$(date +%s) elapsed=0 LOG_PREFIX=广告模型自动更新任务 # 训练和预测数据分区 train_begin_str='' train_end_str='' predict_begin_str='' predict_end_str='' # HDFS保存数据的目录 trainBucketFeaturePath=${bucketFeatureSavePathHome} predictBucketFeaturePath=${bucketFeatureSavePathHome} local_model_file_path=${MODEL_HOME}/${model_name}.txt local_change_model_file_path=${MODEL_HOME}/${model_name}_change.txt max_hour=21 max_minute=20 # 全局初始化 global_init() { # 获取当前小时,确定需要使用的数据分区范围 local current_hour="$(date +%H)" # if [ $current_hour -lt 08 ]; then train_begin_str=${today_early_1}14 train_end_str=${today_early_1}21 predict_begin_str=${today_early_1}22 predict_end_str=${today_early_1}23 trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/train predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/predict local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt max_hour=12 # elif [ $current_hour -ge 20 ]; then # train_begin_str=${today_early_1}22 # train_end_str=${today}13 # predict_begin_str=${today}14 # predict_end_str=${today}15 # trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/train # predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/predict # local_model_file_path=${MODEL_HOME}/${train_end_str}.txt # local_change_model_file_path=${MODEL_HOME}/${train_end_str}_change.txt # max_hour=21 # else # echo "当前时间段异常: 退出任务" # exit 1 # fi # 删除HDFS目录,保证本次任务运行时目录干净 $HADOOP fs -rm -r -skipTrash ${trainBucketFeaturePath} $HADOOP fs -rm -r -skipTrash ${predictBucketFeaturePath} echo "全局变量初始化化: " echo " train_begin_str=${train_begin_str}" echo " train_end_str=${train_end_str}" echo " predict_begin_str=${predict_begin_str}" echo " predict_end_str=${predict_end_str}" echo " originDataSavePath=${originDataSavePath}" echo " trainBucketFeaturePath=${trainBucketFeaturePath}" echo " predictBucketFeaturePath=${predictBucketFeaturePath}" echo " local_model_file_path=${local_model_file_path}" echo " local_change_model_file_path=${local_change_model_file_path}" echo " max_hour=${max_hour}" } # 校验命令的退出码 check_run_status() { local status=$1 local step_start_time=$2 local step_name=$3 local step_end_time=$(date +%s) local step_elapsed=$(($step_end_time - $step_start_time)) if [ $status -ne 0 ]; then echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed" local elapsed=$(($step_end_time - $start_time)) # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed" exit 1 else echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed" fi } # 校验大数据任务是否执行完成 check_ad_hive() { local step_start_time=$(date +%s) while true; do local python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${predict_end_str:0:8} --hh ${predict_end_str:8:10}) local step_end_time=$(date +%s) local elapsed=$(($step_end_time - $step_start_time)) if [ "$python_return_code" -eq 0 ]; then break fi echo "Python程序返回非0值,等待五分钟后再次调用。" sleep 300 local current_hour=$(date +%H) local current_minute=$(date +%M) if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then local msg="大数据数据生产校验失败, 分区: ${today}10" echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed" # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed" exit 1 fi done echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed" } # 原始特征生产 make_origin_data() { local step_start_time=$(date +%s) /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \ --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ tablePart:64 repartition:16 \ beginStr:${train_begin_str} endStr:${predict_end_str} \ savePath:${originDataSavePath} \ table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \ idDefaultValue:0.01 local return_code=$? check_run_status $return_code $step_start_time "Spark原始样本生产任务" } # 特征分桶,训练用的数据和预测用的数据分不同的目录 make_bucket_feature() { local step_start_time=$(date +%s) # 训练用的数据 /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ beginStr:${train_begin_str} endStr:${train_end_str} repartition:100 \ filterNames:adid_,targeting_conversion_ \ readPath:${originDataSavePath} \ savePath:${trainBucketFeaturePath} local return_code=$? check_run_status $return_code $step_start_time "Spark特征分桶任务: 训练数据分桶" # 预测用的数据 /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ beginStr:${predict_begin_str} endStr:${predict_end_str} repartition:100 \ filterNames:adid_,targeting_conversion_ \ readPath:${originDataSavePath} \ savePath:${predictBucketFeaturePath} return_code=$? check_run_status $return_code $step_start_time "Spark特征分桶任务: 预测数据分桶" } main() { global_init check_ad_hive make_origin_data make_bucket_feature } main