#!/bin/sh set -x source /root/anaconda3/bin/activate py37 export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8 export PATH=$SPARK_HOME/bin:$PATH export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf export JAVA_HOME=/usr/lib/jvm/java-1.8.0 # nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 & # 原始数据table name table='alg_recsys_sample_all_v2' # 处理分区配置 推荐数据间隔一天生产,所以5日0点使用3日0-23点数据生产new模型数据 begin_early_2_Str=20240728 end_early_2_Str=20240728 beginHhStr=00 endHhStr=23 max_hour=05 max_minute=00 # 各节点产出hdfs文件绝对路径 # 源数据文件 originDataPath=/dw/recommend/model/41_recsys_sample_data_new_table/ # 特征分桶 bucketDataPath=/dw/recommend/model/43_recsys_train_data_new_table/ # hadoop HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop # 0 判断上游表是否生产完成,最长等待到max_hour点 # shellcheck disable=SC2154 # echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}" # while true; do # python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr}) # echo "python 返回值:${python_return_code}" # if [ $python_return_code -eq 0 ]; then # echo "Python程序返回0,校验存在数据,退出循环。" # break # fi # echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。" # sleep 300 # current_hour=$(date +%H) # current_minute=$(date +%M) # # shellcheck disable=SC2039 # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then # echo "最长等待时间已到,失败:${current_hour}-${current_minute}" # exit 1 # fi # done # 1 生产原始数据 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始根据${table}生产原始数据" /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \ --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ tablePart:64 repartition:32 \ beginStr:${begin_early_2_Str}00 endStr:${end_early_2_Str}09 \ savePath:${originDataPath} \ table:${table} & /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \ --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ tablePart:64 repartition:32 \ beginStr:${begin_early_2_Str}10 endStr:${end_early_2_Str}15 \ savePath:${originDataPath} \ table:${table} & /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_41_originData_20240709 \ --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ tablePart:64 repartition:32 \ beginStr:${begin_early_2_Str}16 endStr:${end_early_2_Str}23 \ savePath:${originDataPath} \ table:${table} & wait if [ $? -ne 0 ]; then echo "Spark原始样本生产任务执行失败" exit 1 else echo "spark原始样本生产执行成功" fi # 2 特征分桶 echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------根据特征分桶生产重打分特征数据" /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ --class com.aliyun.odps.spark.examples.makedata_recsys.makedata_recsys_43_bucketData_20240709 \ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ readPath:${originDataPath} \ savePath:${bucketDataPath} \ beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:500 \ filterNames:XXXXXXXXX \ fileName:20240609_bucket_314.txt \ whatLabel:is_return whatApps:0,4,21,17 if [ $? -ne 0 ]; then echo "Spark特征分桶处理任务执行失败" exit 1 else echo "spark特征分桶处理执行成功" fi echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------spark特征分桶处理执行成功:${begin_early_2_Str}"