#!/bin/sh set -ex # 0 全局变量/参数 originDataSavePath=/dw/recommend/model/31_ad_sample_data_auto/ bucketFeatureSavePath=/dw/recommend/model/33_ad_train_data_nosparse_auto/ model_name=model_lr0 today="$(date +%Y%m%d)" today_early_1="$(date -d '1 days ago' +%Y%m%d)" beginTime=08 endTime=23 beginStr=${today_early_1}${beginTime} endStr=${today_early_1}${endTime} MODEL_PATH=/root/zhaohp/recommend-emr-dataprocess/model HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop FM_HOME=/root/sunmingze/alphaFM OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model/ ## 1 判断依赖的数据表是否生产完成 #source /root/anaconda3/bin/activate py37 #max_hour=15 #max_minute=00 #while true; do # python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh ${endTime}) # if [ $python_return_code -eq 0 ]; then # echo "Python程序返回0,退出循环。" # break # fi # echo "Python程序返回非0值,等待五分钟后再次调用。" # sleep 300 # current_hour=$(date +%H) # current_minute=$(date +%M) # if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then # echo "最长等待时间已到,失败:${current_hour}-${current_minute}" # msg="广告特征数据校验失败,大数据分区没有数据: ${today_early_1}${endTime}" # /root/anaconda3/bin/python ad/utils_monitor.py ${msg} # exit 1 # fi #done # # ## 2 原始特征生成 #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \ #--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \ #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ #tablePart:64 repartition:32 \ #beginStr:${beginStr} endStr:${endStr} \ #savePath:${originDataSavePath} \ #table:alg_recsys_ad_sample_all_new #if [ $? -ne 0 ]; then # echo "Spark原始样本生产任务执行失败" # msg="广告特征数据生成失败,Spark原始样本生产任务执行失败" # /root/anaconda3/bin/python ad/utils_monitor.py ${msg} # exit 1 #else # echo "spark原始样本生产执行成功" #fi # # ## 3 特征分桶 #/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \ #--class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240622 \ #--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \ #./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \ #beginStr:${today_early_1} endStr:${today_early_1} repartition:400 \ #filterNames:XXXXX \ #bucketFileName:20240620_ad_bucket_249_fix.txt \ #readPath:${originDataSavePath} \ #savePath:${bucketFeatureSavePath} #if [ $? -ne 0 ]; then # echo "Spark特征分桶处理任务执行失败" # msg="广告特征分桶失败,Spark特征分桶处理任务执行失败" # /root/anaconda3/bin/python ad/utils_monitor.py ${msg} # exit 1 #else # echo "spark特征分桶处理执行成功" #fi # # ## 4 模型训练 #$HADOOP fs -text ${bucketFeatureSavePath}/${today_early_1}/* | /root/sunmingze/alphaFM/bin/fm_train -m model/${model_name}_${today_early_1}.txt -dim 1,1,0 -core 8 #if [ $? -ne 0 ]; then # echo "模型训练失败" # /root/anaconda3/bin/python ad/utils_monitor.py "广告模型训练失败" # exit 1 #fi # # ## 5 对比AUC ## 5.1 生成今天08-10的原始特征数据 # # # # # # # # # # # # # # ## 6 模型格式转换 #cat ${MODEL_PATH}/${model_name}_${today_early_1}.txt \ #| sed '1d' | awk -F " " '{if($2!="0") print $1"\t"$2}' \ #> ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt # 7 模型文件上传OSS online_model_path=${OSS_PATH}/${model_name}.txt $HADOOP fs -test -e ${online_model_path} if [ $? -eq 0 ]; then echo "数据存在, 先删除。" $HADOOP fs -rm -r ${online_model_path} else echo "数据不存在" fi $HADOOP fs -put ${MODEL_PATH}/${model_name}_${today_early_1}_change.txt ${online_model_path} if [ $? -eq 0 ]; then echo "推荐模型文件至OSS成功" else echo "推荐模型文件至OSS失败" /root/anaconda3/bin/python ad/utils_monitor.py "推荐模型文件至OSS失败" fi # 7.3 本地保存最新的线上使用的模型,用于下一次的AUC验证 cp ${MODEL_PATH}/${model_name}_${today_early_1}.txt ${MODEL_PATH}/model_online.txt