|
@@ -31,6 +31,25 @@ target_names = {
|
|
|
|
|
|
experiment_id = "draft-wqgkag89sbh9v1zvut"
|
|
|
|
|
|
+MAX_RETRIES = 3
|
|
|
+
|
|
|
+
|
|
|
+def retry(func):
|
|
|
+ def wrapper(*args, **kwargs):
|
|
|
+ retries = 0
|
|
|
+ while retries < MAX_RETRIES:
|
|
|
+ try:
|
|
|
+ result = func(*args, **kwargs)
|
|
|
+ if result is not False:
|
|
|
+ return result
|
|
|
+ except Exception as e:
|
|
|
+ print(f"函数 {func.__name__} 执行时发生异常: {e},重试第 {retries + 1} 次")
|
|
|
+ retries += 1
|
|
|
+ print(f"函数 {func.__name__} 重试 {MAX_RETRIES} 次后仍失败。")
|
|
|
+ return False
|
|
|
+
|
|
|
+ return wrapper
|
|
|
+
|
|
|
|
|
|
def get_odps_instance(project):
|
|
|
odps = ODPS(
|
|
@@ -144,6 +163,18 @@ def update_train_tables(old_str):
|
|
|
return None
|
|
|
|
|
|
|
|
|
+def compare_timestamp_with_today_start(time_str):
|
|
|
+ # 解析时间字符串为 datetime 对象
|
|
|
+ time_obj = datetime.fromisoformat(time_str)
|
|
|
+ # 将其转换为时间戳
|
|
|
+ target_timestamp = time_obj.timestamp()
|
|
|
+ # 获取今天开始的时间
|
|
|
+ today_start = datetime.combine(datetime.now().date(), datetime.min.time())
|
|
|
+ # 将今天开始时间转换为时间戳
|
|
|
+ today_start_timestamp = today_start.timestamp()
|
|
|
+ return target_timestamp > today_start_timestamp
|
|
|
+
|
|
|
+
|
|
|
def update_train_table(old_str, table):
|
|
|
address = 'odps://pai_algo/tables/'
|
|
|
train_table = address + table
|
|
@@ -229,9 +260,7 @@ class PAIClient:
|
|
|
resp = client.list_experiments_with_options(list_experiments_request, headers, runtime)
|
|
|
return resp.body.to_map()
|
|
|
except Exception as error:
|
|
|
- print(error.message)
|
|
|
- print(error.data.get("Recommend"))
|
|
|
- UtilClient.assert_as_string(error.message)
|
|
|
+ raise Exception(f"get_work_flow_draft_list error {error}")
|
|
|
|
|
|
@staticmethod
|
|
|
def get_work_flow_draft(experiment_id: str):
|
|
@@ -243,12 +272,7 @@ class PAIClient:
|
|
|
resp = client.get_experiment_with_options(experiment_id, headers, runtime)
|
|
|
return resp.body.to_map()
|
|
|
except Exception as error:
|
|
|
- # 此处仅做打印展示,请谨慎对待异常处理,在工程项目中切勿直接忽略异常。
|
|
|
- # 错误 message
|
|
|
- print(error.message)
|
|
|
- # 诊断地址
|
|
|
- print(error.data.get("Recommend"))
|
|
|
- UtilClient.assert_as_string(error.message)
|
|
|
+ raise Exception(f"get_work_flow_draft error {error}")
|
|
|
|
|
|
@staticmethod
|
|
|
def get_describe_service(service_name: str):
|
|
@@ -260,12 +284,7 @@ class PAIClient:
|
|
|
resp = client.describe_service_with_options('cn-hangzhou', service_name, headers, runtime)
|
|
|
return resp.body.to_map()
|
|
|
except Exception as error:
|
|
|
- # 此处仅做打印展示,请谨慎对待异常处理,在工程项目中切勿直接忽略异常。
|
|
|
- # 错误 message
|
|
|
- print(error.message)
|
|
|
- # 诊断地址
|
|
|
- print(error.data.get("Recommend"))
|
|
|
- UtilClient.assert_as_string(error.message)
|
|
|
+ raise Exception(f"get_describe_service error {error}")
|
|
|
|
|
|
@staticmethod
|
|
|
def update_experiment_content(experiment_id: str, content: str, version: int):
|
|
@@ -280,12 +299,7 @@ class PAIClient:
|
|
|
headers, runtime)
|
|
|
print(resp.body.to_map())
|
|
|
except Exception as error:
|
|
|
- # 此处仅做打印展示,请谨慎对待异常处理,在工程项目中切勿直接忽略异常。
|
|
|
- # 错误 message
|
|
|
- print(error.message)
|
|
|
- # 诊断地址
|
|
|
- print(error.data.get("Recommend"))
|
|
|
- UtilClient.assert_as_string(error.message)
|
|
|
+ raise Exception(f"update_experiment_content error {error}")
|
|
|
|
|
|
@staticmethod
|
|
|
def create_job(experiment_id: str, node_id: str, execute_type: str):
|
|
@@ -301,18 +315,29 @@ class PAIClient:
|
|
|
resp = client.create_job_with_options(create_job_request, headers, runtime)
|
|
|
return resp.body.to_map()
|
|
|
except Exception as error:
|
|
|
- # 此处仅做打印展示,请谨慎对待异常处理,在工程项目中切勿直接忽略异常。
|
|
|
- # 错误 message
|
|
|
- print(error.message)
|
|
|
- # 诊断地址
|
|
|
- print(error.data.get("Recommend"))
|
|
|
- UtilClient.assert_as_string(error.message)
|
|
|
+ raise Exception(f"create_job error {error}")
|
|
|
+
|
|
|
+ @staticmethod
|
|
|
+ def get_jobs_list(experiment_id: str, order='DESC'):
|
|
|
+ client = PAIClient.create_client()
|
|
|
+ list_jobs_request = pai_studio_20210202_models.ListJobsRequest(
|
|
|
+ experiment_id=experiment_id,
|
|
|
+ order=order
|
|
|
+ )
|
|
|
+ runtime = util_models.RuntimeOptions()
|
|
|
+ headers = {}
|
|
|
+ try:
|
|
|
+ # 复制代码运行请自行打印 API 的返回值
|
|
|
+ resp = client.list_jobs_with_options(list_jobs_request, headers, runtime)
|
|
|
+ return resp.body.to_map()
|
|
|
+ except Exception as error:
|
|
|
+ raise Exception(f"get_jobs_list error {error}")
|
|
|
|
|
|
@staticmethod
|
|
|
- def get_job_detail(job_id: str):
|
|
|
+ def get_job_detail(job_id: str, verbose=False):
|
|
|
client = PAIClient.create_client()
|
|
|
get_job_request = pai_studio_20210202_models.GetJobRequest(
|
|
|
- verbose=False
|
|
|
+ verbose=verbose
|
|
|
)
|
|
|
runtime = util_models.RuntimeOptions()
|
|
|
headers = {}
|
|
@@ -369,36 +394,47 @@ def get_online_version_dt(service_name: str):
|
|
|
|
|
|
|
|
|
def update_online_flow():
|
|
|
- online_version_dt = get_online_version_dt('ad_rank_dnn_v11_easyrec')
|
|
|
- draft = PAIClient.get_work_flow_draft(experiment_id)
|
|
|
- print(json.dumps(draft, ensure_ascii=False))
|
|
|
- content = draft['Content']
|
|
|
- version = draft['Version']
|
|
|
- print(content)
|
|
|
- content_json = json.loads(content)
|
|
|
- nodes = content_json.get('nodes')
|
|
|
- global_params = content_json.get('globalParams')
|
|
|
- bizdate = get_previous_days_date(1)
|
|
|
- for global_param in global_params:
|
|
|
- if global_param['name'] == 'bizdate':
|
|
|
- global_param['value'] = bizdate
|
|
|
- if global_param['name'] == 'online_version_dt':
|
|
|
- global_param['value'] = online_version_dt
|
|
|
- if global_param['name'] == 'eval_date':
|
|
|
- global_param['value'] = bizdate
|
|
|
- for node in nodes:
|
|
|
- name = node['name']
|
|
|
- if name == '样本shuffle':
|
|
|
- properties = node['properties']
|
|
|
- for property in properties:
|
|
|
- if property['name'] == 'sql':
|
|
|
- value = property['value']
|
|
|
- new_value = update_train_tables(value)
|
|
|
- if new_value is None:
|
|
|
- print("error")
|
|
|
- property['value'] = new_value
|
|
|
- new_content = json.dumps(content_json, ensure_ascii=False)
|
|
|
- PAIClient.update_experiment_content(experiment_id, new_content, version)
|
|
|
+ try:
|
|
|
+ online_version_dt = get_online_version_dt('ad_rank_dnn_v11_easyrec')
|
|
|
+ draft = PAIClient.get_work_flow_draft(experiment_id)
|
|
|
+ print(json.dumps(draft, ensure_ascii=False))
|
|
|
+ content = draft['Content']
|
|
|
+ version = draft['Version']
|
|
|
+ print(content)
|
|
|
+ content_json = json.loads(content)
|
|
|
+ nodes = content_json.get('nodes')
|
|
|
+ global_params = content_json.get('globalParams')
|
|
|
+ bizdate = get_previous_days_date(1)
|
|
|
+ for global_param in global_params:
|
|
|
+ try:
|
|
|
+ if global_param['name'] == 'bizdate':
|
|
|
+ global_param['value'] = bizdate
|
|
|
+ if global_param['name'] == 'online_version_dt':
|
|
|
+ global_param['value'] = online_version_dt
|
|
|
+ if global_param['name'] == 'eval_date':
|
|
|
+ global_param['value'] = bizdate
|
|
|
+ except KeyError:
|
|
|
+ raise Exception("在处理全局参数时,字典中缺少必要的键")
|
|
|
+ for node in nodes:
|
|
|
+ try:
|
|
|
+ name = node['name']
|
|
|
+ if name == '样本shuffle':
|
|
|
+ properties = node['properties']
|
|
|
+ for property in properties:
|
|
|
+ if property['name'] == 'sql':
|
|
|
+ value = property['value']
|
|
|
+ new_value = update_train_tables(value)
|
|
|
+ if new_value is None:
|
|
|
+ print("error")
|
|
|
+ property['value'] = new_value
|
|
|
+ except KeyError:
|
|
|
+ raise Exception("在处理节点属性时,字典中缺少必要的键")
|
|
|
+ new_content = json.dumps(content_json, ensure_ascii=False)
|
|
|
+ PAIClient.update_experiment_content(experiment_id, new_content, version)
|
|
|
+ except json.JSONDecodeError:
|
|
|
+ raise Exception("JSON 解析错误,可能是草稿内容格式不正确")
|
|
|
+ except Exception as e:
|
|
|
+ raise Exception(f"发生未知错误: {e}")
|
|
|
|
|
|
|
|
|
def update_shuffle_flow(table):
|
|
@@ -476,78 +512,152 @@ def get_node_dict():
|
|
|
return node_dict
|
|
|
|
|
|
|
|
|
-def train_model():
|
|
|
- node_dict = get_node_dict()
|
|
|
- train_node_id = node_dict['样本shuffle']
|
|
|
- execute_type = 'EXECUTE_ONE'
|
|
|
- validate_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
- validate_job_id = validate_res['JobId']
|
|
|
- validate_job_detail = wait_job_end(validate_job_id)
|
|
|
- if validate_job_detail['Status'] == 'Succeeded':
|
|
|
- pipeline_run_id = validate_job_detail['RunId']
|
|
|
- node_id = validate_job_detail['PaiflowNodeId']
|
|
|
- flow_out_put_detail = PAIClient.get_flow_out_put(pipeline_run_id, node_id, 2)
|
|
|
- out_puts = flow_out_put_detail['Outputs']
|
|
|
- table = None
|
|
|
- for out_put in out_puts:
|
|
|
- if out_put["Producer"] == node_dict['样本shuffle'] and out_put["Name"] == "outputTable":
|
|
|
- value1 = json.loads(out_put["Info"]['value'])
|
|
|
- table = value1['location']['table']
|
|
|
- if table is not None:
|
|
|
- update_shuffle_flow(table)
|
|
|
- node_dict = get_node_dict()
|
|
|
- train_node_id = node_dict['模型训练-样本shufle']
|
|
|
- execute_type = 'EXECUTE_ONE'
|
|
|
- train_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
- train_job_id = train_res['JobId']
|
|
|
- train_job_detail = wait_job_end(train_job_id)
|
|
|
- if train_job_detail['Status'] == 'Succeeded':
|
|
|
- export_node_id = node_dict['模型导出-2']
|
|
|
- export_res = PAIClient.create_job(experiment_id, export_node_id, execute_type)
|
|
|
- export_job_id = export_res['JobId']
|
|
|
- export_job_detail = wait_job_end(export_job_id)
|
|
|
- if export_job_detail['Status'] == 'Succeeded':
|
|
|
+def get_job_dict():
|
|
|
+ job_dict = {}
|
|
|
+ jobs_list = PAIClient.get_jobs_list(experiment_id)
|
|
|
+ for job in jobs_list['Jobs']:
|
|
|
+ # 解析时间字符串为 datetime 对象
|
|
|
+ if not compare_timestamp_with_today_start(job['GmtCreateTime']):
|
|
|
+ break
|
|
|
+ job_id = job['JobId']
|
|
|
+ job_detail = PAIClient.get_job_detail(job_id, verbose=True)
|
|
|
+ for name in target_names:
|
|
|
+ if job_detail['Status'] != 'Succeeded':
|
|
|
+ continue
|
|
|
+ if name in job_dict:
|
|
|
+ continue
|
|
|
+ if name in job_detail['RunInfo']:
|
|
|
+ job_dict[name] = job_detail['JobId']
|
|
|
+ return job_dict
|
|
|
+
|
|
|
+
|
|
|
+@retry
|
|
|
+def shuffle_table():
|
|
|
+ try:
|
|
|
+ node_dict = get_node_dict()
|
|
|
+ train_node_id = node_dict['样本shuffle']
|
|
|
+ execute_type = 'EXECUTE_ONE'
|
|
|
+ validate_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
+ validate_job_id = validate_res['JobId']
|
|
|
+ validate_job_detail = wait_job_end(validate_job_id)
|
|
|
+ if validate_job_detail['Status'] == 'Succeeded':
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+ except Exception as e:
|
|
|
+ error_message = f"在执行 shuffle_table 函数时发生异常: {str(e)}"
|
|
|
+ print(error_message)
|
|
|
+ raise Exception(error_message)
|
|
|
+
|
|
|
+
|
|
|
+@retry
|
|
|
+def shuffle_train_model():
|
|
|
+ try:
|
|
|
+ node_dict = get_node_dict()
|
|
|
+ job_dict = get_job_dict()
|
|
|
+ job_id = job_dict['样本shuffle']
|
|
|
+ validate_job_detail = wait_job_end(job_id)
|
|
|
+ if validate_job_detail['Status'] == 'Succeeded':
|
|
|
+ pipeline_run_id = validate_job_detail['RunId']
|
|
|
+ node_id = validate_job_detail['PaiflowNodeId']
|
|
|
+ flow_out_put_detail = PAIClient.get_flow_out_put(pipeline_run_id, node_id, 2)
|
|
|
+ out_puts = flow_out_put_detail['Outputs']
|
|
|
+ table = None
|
|
|
+ for out_put in out_puts:
|
|
|
+ if out_put["Producer"] == node_dict['样本shuffle'] and out_put["Name"] == "outputTable":
|
|
|
+ value1 = json.loads(out_put["Info"]['value'])
|
|
|
+ table = value1['location']['table']
|
|
|
+ if table is not None:
|
|
|
+ update_shuffle_flow(table)
|
|
|
+ node_dict = get_node_dict()
|
|
|
+ train_node_id = node_dict['模型训练-样本shufle']
|
|
|
+ execute_type = 'EXECUTE_ONE'
|
|
|
+ train_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
+ train_job_id = train_res['JobId']
|
|
|
+ train_job_detail = wait_job_end(train_job_id)
|
|
|
+ if train_job_detail['Status'] == 'Succeeded':
|
|
|
return True
|
|
|
- return False
|
|
|
+ return False
|
|
|
+ except Exception as e:
|
|
|
+ error_message = f"在执行 shuffle_train_model 函数时发生异常: {str(e)}"
|
|
|
+ print(error_message)
|
|
|
+ raise Exception(error_message)
|
|
|
+
|
|
|
+
|
|
|
+@retry
|
|
|
+def export_model():
|
|
|
+ try:
|
|
|
+ node_dict = get_node_dict()
|
|
|
+ export_node_id = node_dict['模型导出-2']
|
|
|
+ execute_type = 'EXECUTE_ONE'
|
|
|
+ export_res = PAIClient.create_job(experiment_id, export_node_id, execute_type)
|
|
|
+ export_job_id = export_res['JobId']
|
|
|
+ export_job_detail = wait_job_end(export_job_id)
|
|
|
+ if export_job_detail['Status'] == 'Succeeded':
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+ except Exception as e:
|
|
|
+ error_msg = f"在执行 export_model 函数时发生异常: {str(e)}"
|
|
|
+ raise Exception(error_msg)
|
|
|
|
|
|
|
|
|
def update_online_model():
|
|
|
- node_dict = get_node_dict()
|
|
|
- train_node_id = node_dict['更新EAS服务(Beta)-1']
|
|
|
- execute_type = 'EXECUTE_ONE'
|
|
|
- train_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
- train_job_id = train_res['JobId']
|
|
|
- train_job_detail = wait_job_end(train_job_id)
|
|
|
- if train_job_detail['Status'] == 'Succeeded':
|
|
|
- return True
|
|
|
- return False
|
|
|
-
|
|
|
-
|
|
|
-def validate_model_data_accuracy(start_time):
|
|
|
- node_dict = get_node_dict()
|
|
|
- train_node_id = node_dict['虚拟起始节点']
|
|
|
- execute_type = 'EXECUTE_FROM_HERE'
|
|
|
- validate_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
- validate_job_id = validate_res['JobId']
|
|
|
- validate_job_detail = wait_job_end(validate_job_id)
|
|
|
- if validate_job_detail['Status'] == 'Succeeded':
|
|
|
- pipeline_run_id = validate_job_detail['RunId']
|
|
|
- node_id = validate_job_detail['PaiflowNodeId']
|
|
|
- flow_out_put_detail = PAIClient.get_flow_out_put(pipeline_run_id, node_id, 3)
|
|
|
- print(flow_out_put_detail)
|
|
|
- table_dict = {}
|
|
|
- out_puts = flow_out_put_detail['Outputs']
|
|
|
- for out_put in out_puts:
|
|
|
- if out_put["Producer"] == node_dict['二分类评估-1'] and out_put["Name"] == "outputMetricTable":
|
|
|
- value1 = json.loads(out_put["Info"]['value'])
|
|
|
- table_dict['二分类评估-1'] = value1['location']['table']
|
|
|
- if out_put["Producer"] == node_dict['二分类评估-2'] and out_put["Name"] == "outputMetricTable":
|
|
|
- value2 = json.loads(out_put["Info"]['value'])
|
|
|
- table_dict['二分类评估-2'] = value2['location']['table']
|
|
|
- if out_put["Producer"] == node_dict['预测结果对比'] and out_put["Name"] == "outputTable":
|
|
|
- value3 = json.loads(out_put["Info"]['value'])
|
|
|
- table_dict['预测结果对比'] = value3['location']['table']
|
|
|
+ try:
|
|
|
+ node_dict = get_node_dict()
|
|
|
+ train_node_id = node_dict['更新EAS服务(Beta)-1']
|
|
|
+ execute_type = 'EXECUTE_ONE'
|
|
|
+ train_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
+ train_job_id = train_res['JobId']
|
|
|
+ train_job_detail = wait_job_end(train_job_id)
|
|
|
+ if train_job_detail['Status'] == 'Succeeded':
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+ except Exception as e:
|
|
|
+ error_message = f"在执行 update_online_model 函数时发生异常: {str(e)}"
|
|
|
+ print(error_message)
|
|
|
+ raise Exception(error_message)
|
|
|
|
|
|
+
|
|
|
+@retry
|
|
|
+def get_validate_model_data():
|
|
|
+ try:
|
|
|
+ node_dict = get_node_dict()
|
|
|
+ train_node_id = node_dict['虚拟起始节点']
|
|
|
+ execute_type = 'EXECUTE_FROM_HERE'
|
|
|
+ validate_res = PAIClient.create_job(experiment_id, train_node_id, execute_type)
|
|
|
+ validate_job_id = validate_res['JobId']
|
|
|
+ validate_job_detail = wait_job_end(validate_job_id)
|
|
|
+ if validate_job_detail['Status'] == 'Succeeded':
|
|
|
+ return True
|
|
|
+ return False
|
|
|
+ except Exception as e:
|
|
|
+ error_message = f"在执行 get_validate_model_data 函数时出现异常: {e}"
|
|
|
+ print(error_message)
|
|
|
+ raise Exception(error_message)
|
|
|
+
|
|
|
+
|
|
|
+def validate_model_data_accuracy():
|
|
|
+ try:
|
|
|
+ table_dict = {}
|
|
|
+ node_dict = get_node_dict()
|
|
|
+ job_dict = get_job_dict()
|
|
|
+ job_id = job_dict['虚拟起始节点']
|
|
|
+ validate_job_detail = wait_job_end(job_id)
|
|
|
+ if validate_job_detail['Status'] == 'Succeeded':
|
|
|
+ pipeline_run_id = validate_job_detail['RunId']
|
|
|
+ node_id = validate_job_detail['PaiflowNodeId']
|
|
|
+ flow_out_put_detail = PAIClient.get_flow_out_put(pipeline_run_id, node_id, 3)
|
|
|
+ print(flow_out_put_detail)
|
|
|
+ out_puts = flow_out_put_detail['Outputs']
|
|
|
+ for out_put in out_puts:
|
|
|
+ if out_put["Producer"] == node_dict['二分类评估-1'] and out_put["Name"] == "outputMetricTable":
|
|
|
+ value1 = json.loads(out_put["Info"]['value'])
|
|
|
+ table_dict['二分类评估-1'] = value1['location']['table']
|
|
|
+ if out_put["Producer"] == node_dict['二分类评估-2'] and out_put["Name"] == "outputMetricTable":
|
|
|
+ value2 = json.loads(out_put["Info"]['value'])
|
|
|
+ table_dict['二分类评估-2'] = value2['location']['table']
|
|
|
+ if out_put["Producer"] == node_dict['预测结果对比'] and out_put["Name"] == "outputTable":
|
|
|
+ value3 = json.loads(out_put["Info"]['value'])
|
|
|
+ table_dict['预测结果对比'] = value3['location']['table']
|
|
|
num = 10
|
|
|
df = get_data_from_odps('pai_algo', table_dict['预测结果对比'], 10)
|
|
|
# 对指定列取绝对值再求和
|
|
@@ -558,7 +668,7 @@ def validate_model_data_accuracy(start_time):
|
|
|
bizdate = get_previous_days_date(1)
|
|
|
score_diff = abs(old_abs_avg - new_abs_avg)
|
|
|
msg = ""
|
|
|
- level = ""
|
|
|
+ result = False
|
|
|
if new_abs_avg > 0.1:
|
|
|
msg += f'线上模型评估{bizdate}的数据,绝对误差大于0.1,请检查'
|
|
|
level = 'error'
|
|
@@ -566,11 +676,9 @@ def validate_model_data_accuracy(start_time):
|
|
|
msg += f'两个模型评估${bizdate}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查'
|
|
|
level = 'error'
|
|
|
else:
|
|
|
- # update_online_model()
|
|
|
msg += 'DNN广告模型更新完成'
|
|
|
level = 'info'
|
|
|
- step_end_time = int(time.time())
|
|
|
- elapsed = step_end_time - start_time
|
|
|
+ result = True
|
|
|
|
|
|
# 初始化表格头部
|
|
|
top10_msg = "| CID | 老模型相对真实CTCVR的变化 | 新模型相对真实CTCVR的变化 |"
|
|
@@ -587,17 +695,28 @@ def validate_model_data_accuracy(start_time):
|
|
|
msg += f"\n\t - 新模型AUC: {new_auc}"
|
|
|
msg += f"\n\t - 老模型Top10差异平均值: {old_abs_avg}"
|
|
|
msg += f"\n\t - 新模型Top10差异平均值: {new_abs_avg}"
|
|
|
- _monitor(level, msg, start_time, elapsed, top10_msg)
|
|
|
+ return result, msg, level, top10_msg
|
|
|
+
|
|
|
+ except Exception as e:
|
|
|
+ error_message = f"在执行 validate_model_data_accuracy 函数时出现异常: {str(e)}"
|
|
|
+ print(error_message)
|
|
|
+ raise Exception(error_message)
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
start_time = int(time.time())
|
|
|
- # 1.更新工作流
|
|
|
- update_online_flow()
|
|
|
- # 2.训练模型
|
|
|
- train_res = train_model()
|
|
|
- if train_res:
|
|
|
- # 3. 验证模型数据 & 更新模型到线上
|
|
|
- validate_model_data_accuracy(start_time)
|
|
|
+ functions = [shuffle_table, shuffle_train_model, export_model, get_validate_model_data]
|
|
|
+ for func in functions:
|
|
|
+ if not func():
|
|
|
+ print(f"{func.__name__} 执行失败,后续函数不再执行。")
|
|
|
+ break
|
|
|
else:
|
|
|
- print('train_model_error')
|
|
|
+ print("所有函数都成功执行,可以继续下一步操作。")
|
|
|
+ result, msg, level, top10_msg = validate_model_data_accuracy()
|
|
|
+ if result:
|
|
|
+ # update_online_model()
|
|
|
+ print("success")
|
|
|
+ step_end_time = int(time.time())
|
|
|
+ elapsed = step_end_time - start_time
|
|
|
+ print(level, msg, start_time, elapsed, top10_msg)
|
|
|
+ _monitor(level, msg, start_time, elapsed, top10_msg)
|