| 
					
				 | 
			
			
				@@ -0,0 +1,116 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+package com.aliyun.odps.spark.examples.makedata_recsys_r_rate 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.spark.examples.myUtils.{DataUtils, MyDateUtils, MyHdfsUtils, ParamUtils} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.hadoop.io.compress.GzipCodec 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.spark.sql.SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.JavaConversions._ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.mutable.ArrayBuffer 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.util.Random 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+object makedata_recsys_fm_sample_20250317 { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  def main(args: Array[String]): Unit = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 1. 读取参数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val param = ParamUtils.parseArgs(args) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val readPath = param.getOrElse("readPath", "/dw/recommend/model/83_origin_data/") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val beginStr = param.getOrElse("beginStr", "20250317") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val endStr = param.getOrElse("endStr", "20250317") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val whatApps = param.getOrElse("whatApps", "0,4,5,21,3,6").split(",").toSet 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val whatLabel = param.getOrElse("whatLabel", "is_return_n_noself") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val fuSampleRate = param.getOrElse("fuSampleRate", "-1.0").toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val notUseBucket = param.getOrElse("notUseBucket", "0").toInt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureNameFile = param.getOrElse("featureName", "20241209_recsys_nor_name.txt") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureBucketFile = param.getOrElse("featureBucket", "20241209_recsys_nor_bucket.txt") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val repartition = param.getOrElse("repartition", "100").toInt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/83_recsys_rov_train_data/") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val spark = SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .builder() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .appName(this.getClass.getName) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .getOrCreate() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val sc = spark.sparkContext 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 2. 加载特征 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val loader = getClass.getClassLoader 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureNameSet = DataUtils.loadUseFeatureNames(loader, featureNameFile) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureBucketMap = DataUtils.loadUseFeatureBuckets(loader, notUseBucket, featureBucketFile) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val bucketsMap_br = sc.broadcast(featureBucketMap) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 3. 处理数据 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val dateRange = MyDateUtils.getDateRange(beginStr, endStr) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for (date <- dateRange) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("开始执行:" + date) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val data = sc.textFile(readPath + "/" + date + "*").map(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val rList = r.split("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val logKey = rList(0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val labelKey = rList(1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val scoresMap = rList(2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val featData = rList(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          (logKey, labelKey, scoresMap, featData) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .filter { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (logKey, labelKey, scoresMap, featData) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            validData(logKey, whatApps) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }.filter { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (logKey, labelKey, scoresMap, featData) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val label = DataUtils.parseLabel(labelKey, whatLabel).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            label > 0 || new Random().nextDouble() <= fuSampleRate 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .map { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (logKey, labelKey, scoresMap, featData) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val label = DataUtils.parseLabel(labelKey, whatLabel).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val features = DataUtils.parseFeature(featData) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            (logKey, label, scoresMap, features) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .mapPartitions(row => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val result = new ArrayBuffer[String]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val bucketsMap = bucketsMap_br.value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          row.foreach { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            case (logKey, label, scoresMap, features) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              val featuresBucket = DataUtils.bucketFeature(featureNameSet, bucketsMap, features) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              result.add(label + "\t" + featuresBucket.mkString("\t")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          result.iterator 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      // 4. 保存数据到hdfs 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val hdfsPath = savePath + "/" + date 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("删除路径并开始数据写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        MyHdfsUtils.delete_hdfs_path(hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        data.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("路径不合法,无法写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  private def recommendFlow(flowPool: String): Boolean = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if (flowPool.isEmpty || flowPool.endsWith("#1")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      return true 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    false 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  private def validData(logKey: String, whatApps: Set[String]): Boolean = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // apptype, page, pagesource, recommendpagetype, flowpool, abcode, mid, vid, level, ts 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val cells = logKey.split(",") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val apptype = cells(0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val page = cells(1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    //val pagesource = cells(2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val recommendpagetype = cells(3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val flowpool = cells(4) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if (whatApps.contains(apptype)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (recommendFlow(flowpool)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (page.equals("详情后沉浸页")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          return true 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } else if (page.equals("回流后沉浸页&内页feed")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          return true 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } else if (page.equals("首页feed")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          return true 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    false 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 |