|
@@ -0,0 +1,207 @@
|
|
|
+#!/bin/sh
|
|
|
+set -x
|
|
|
+
|
|
|
+
|
|
|
+export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
|
|
|
+export PATH=$SPARK_HOME/bin:$PATH
|
|
|
+export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
|
|
|
+export JAVA_HOME=/usr/lib/jvm/java-1.8.0
|
|
|
+
|
|
|
+source /root/anaconda3/bin/activate py37
|
|
|
+
|
|
|
+# 全局常量
|
|
|
+originDataSavePath=/dw/recommend/model/31_ad_sample_data_v3_auto_test
|
|
|
+bucketFeatureSavePathHome=/dw/recommend/model/33_ad_train_data_v3_auto_test
|
|
|
+model_name=model_bkb8_v3_test
|
|
|
+LAST_MODEL_HOME=/root/zhaohp/model_online_test
|
|
|
+
|
|
|
+MODEL_HOME=/root/zhaohp/recommend-emr-dataprocess/model
|
|
|
+OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/ad_model
|
|
|
+
|
|
|
+PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
|
|
|
+HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
|
|
|
+FM_HOME=/root/sunmingze/alphaFM
|
|
|
+
|
|
|
+today="$(date +%Y%m%d)"
|
|
|
+today_early_1="$(date -d '1 days ago' +%Y%m%d)"
|
|
|
+
|
|
|
+start_time=$(date +%s)
|
|
|
+elapsed=0
|
|
|
+LOG_PREFIX=广告模型自动更新任务
|
|
|
+
|
|
|
+# 训练和预测数据分区
|
|
|
+train_begin_str=''
|
|
|
+train_end_str=''
|
|
|
+predict_begin_str=''
|
|
|
+predict_end_str=''
|
|
|
+
|
|
|
+# HDFS保存数据的目录
|
|
|
+trainBucketFeaturePath=${bucketFeatureSavePathHome}
|
|
|
+predictBucketFeaturePath=${bucketFeatureSavePathHome}
|
|
|
+
|
|
|
+local_model_file_path=${MODEL_HOME}/${model_name}.txt
|
|
|
+local_change_model_file_path=${MODEL_HOME}/${model_name}_change.txt
|
|
|
+
|
|
|
+max_hour=21
|
|
|
+max_minute=20
|
|
|
+
|
|
|
+# 全局初始化
|
|
|
+global_init() {
|
|
|
+ # 获取当前小时,确定需要使用的数据分区范围
|
|
|
+ local current_hour="$(date +%H)"
|
|
|
+ # if [ $current_hour -lt 08 ]; then
|
|
|
+ train_begin_str=${today_early_1}14
|
|
|
+ train_end_str=${today_early_1}21
|
|
|
+ predict_begin_str=${today_early_1}22
|
|
|
+ predict_end_str=${today_early_1}23
|
|
|
+
|
|
|
+ trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/train
|
|
|
+ predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today_early_1}/predict
|
|
|
+
|
|
|
+ local_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}.txt
|
|
|
+ local_change_model_file_path=${MODEL_HOME}/${model_name}_${train_end_str}_change.txt
|
|
|
+ max_hour=12
|
|
|
+ # elif [ $current_hour -ge 20 ]; then
|
|
|
+ # train_begin_str=${today_early_1}22
|
|
|
+ # train_end_str=${today}13
|
|
|
+ # predict_begin_str=${today}14
|
|
|
+ # predict_end_str=${today}15
|
|
|
+
|
|
|
+ # trainBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/train
|
|
|
+ # predictBucketFeaturePath=${bucketFeatureSavePathHome}/${today}/predict
|
|
|
+
|
|
|
+ # local_model_file_path=${MODEL_HOME}/${train_end_str}.txt
|
|
|
+ # local_change_model_file_path=${MODEL_HOME}/${train_end_str}_change.txt
|
|
|
+ # max_hour=21
|
|
|
+
|
|
|
+ # else
|
|
|
+ # echo "当前时间段异常: 退出任务"
|
|
|
+ # exit 1
|
|
|
+ # fi
|
|
|
+
|
|
|
+ # 删除HDFS目录,保证本次任务运行时目录干净
|
|
|
+ $HADOOP fs -rm -r -skipTrash ${trainBucketFeaturePath}
|
|
|
+ $HADOOP fs -rm -r -skipTrash ${predictBucketFeaturePath}
|
|
|
+
|
|
|
+ echo "全局变量初始化化: "
|
|
|
+ echo " train_begin_str=${train_begin_str}"
|
|
|
+ echo " train_end_str=${train_end_str}"
|
|
|
+ echo " predict_begin_str=${predict_begin_str}"
|
|
|
+ echo " predict_end_str=${predict_end_str}"
|
|
|
+ echo " originDataSavePath=${originDataSavePath}"
|
|
|
+ echo " trainBucketFeaturePath=${trainBucketFeaturePath}"
|
|
|
+ echo " predictBucketFeaturePath=${predictBucketFeaturePath}"
|
|
|
+ echo " local_model_file_path=${local_model_file_path}"
|
|
|
+ echo " local_change_model_file_path=${local_change_model_file_path}"
|
|
|
+ echo " max_hour=${max_hour}"
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+# 校验命令的退出码
|
|
|
+check_run_status() {
|
|
|
+ local status=$1
|
|
|
+ local step_start_time=$2
|
|
|
+ local step_name=$3
|
|
|
+
|
|
|
+ local step_end_time=$(date +%s)
|
|
|
+ local step_elapsed=$(($step_end_time - $step_start_time))
|
|
|
+
|
|
|
+ if [ $status -ne 0 ]; then
|
|
|
+ echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
|
|
|
+ local elapsed=$(($step_end_time - $start_time))
|
|
|
+ # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
|
|
|
+ exit 1
|
|
|
+ else
|
|
|
+ echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
|
|
|
+ fi
|
|
|
+}
|
|
|
+
|
|
|
+# 校验大数据任务是否执行完成
|
|
|
+check_ad_hive() {
|
|
|
+ local step_start_time=$(date +%s)
|
|
|
+ while true; do
|
|
|
+ local python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${predict_end_str:0:8} --hh ${predict_end_str:8:10})
|
|
|
+
|
|
|
+ local step_end_time=$(date +%s)
|
|
|
+ local elapsed=$(($step_end_time - $step_start_time))
|
|
|
+ if [ "$python_return_code" -eq 0 ]; then
|
|
|
+ break
|
|
|
+ fi
|
|
|
+ echo "Python程序返回非0值,等待五分钟后再次调用。"
|
|
|
+ sleep 300
|
|
|
+ local current_hour=$(date +%H)
|
|
|
+ local current_minute=$(date +%M)
|
|
|
+ if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
+ local msg="大数据数据生产校验失败, 分区: ${today}10"
|
|
|
+ echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
|
|
|
+ # /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
|
|
|
+ exit 1
|
|
|
+ fi
|
|
|
+ done
|
|
|
+ echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+# 原始特征生产
|
|
|
+make_origin_data() {
|
|
|
+ local step_start_time=$(date +%s)
|
|
|
+ /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
+ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_31_originData_20240620 \
|
|
|
+ --master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
|
|
|
+ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
+ tablePart:64 repartition:16 \
|
|
|
+ beginStr:${train_begin_str} endStr:${predict_end_str} \
|
|
|
+ savePath:${originDataSavePath} \
|
|
|
+ table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
|
|
|
+ idDefaultValue:0.01
|
|
|
+
|
|
|
+ local return_code=$?
|
|
|
+ check_run_status $return_code $step_start_time "Spark原始样本生产任务"
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+# 特征分桶,训练用的数据和预测用的数据分不同的目录
|
|
|
+make_bucket_feature() {
|
|
|
+ local step_start_time=$(date +%s)
|
|
|
+ # 训练用的数据
|
|
|
+ /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
+ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
|
|
|
+ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
+ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
+ beginStr:${train_begin_str} endStr:${train_end_str} repartition:100 \
|
|
|
+ filterNames:adid_,targeting_conversion_ \
|
|
|
+ readPath:${originDataSavePath} \
|
|
|
+ savePath:${trainBucketFeaturePath}
|
|
|
+
|
|
|
+ local return_code=$?
|
|
|
+ check_run_status $return_code $step_start_time "Spark特征分桶任务: 训练数据分桶"
|
|
|
+
|
|
|
+ # 预测用的数据
|
|
|
+ /opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
+ --class com.aliyun.odps.spark.zhp.makedata_ad.makedata_ad_33_bucketData_20240717 \
|
|
|
+ --master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
+ ./target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
+ beginStr:${predict_begin_str} endStr:${predict_end_str} repartition:100 \
|
|
|
+ filterNames:adid_,targeting_conversion_ \
|
|
|
+ readPath:${originDataSavePath} \
|
|
|
+ savePath:${predictBucketFeaturePath}
|
|
|
+
|
|
|
+ return_code=$?
|
|
|
+ check_run_status $return_code $step_start_time "Spark特征分桶任务: 预测数据分桶"
|
|
|
+}
|
|
|
+
|
|
|
+main() {
|
|
|
+
|
|
|
+ global_init
|
|
|
+
|
|
|
+ check_ad_hive
|
|
|
+
|
|
|
+ make_origin_data
|
|
|
+
|
|
|
+ make_bucket_feature
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+main
|
|
|
+
|