Browse Source

feat:修改日志

zhaohaipeng 9 tháng trước cách đây
mục cha
commit
f04c0167e7
2 tập tin đã thay đổi với 23 bổ sung25 xóa
  1. 23 13
      ad/01_ad_model_update_everyday.sh
  2. 0 12
      ad/02_predict_check.sh

+ 23 - 13
ad/01_ad_model_update_everyday.sh

@@ -16,19 +16,24 @@ FM_HOME=/root/sunmingze/alphaFM
 OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
 max_hour=17
 max_minute=00
-OSS_ONLINE_MODEL_PATH=${OSS_PATH}/${model_name}.txt
 
 export SPARK_HOME=/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8
 export PATH=$SPARK_HOME/bin:$PATH
 export HADOOP_CONF_DIR=/etc/taihao-apps/hadoop-conf
 export JAVA_HOME=/usr/lib/jvm/java-1.8.0
 
+start_time=$(date "+%Y-%m-%d %H:%M:%S")
+elapsed=0
+LOG_PREFIX=广告模型自动更新任务
+
+
 # 1 判断依赖的数据表是否生产完成
 source /root/anaconda3/bin/activate py37
 while true; do
   python_return_code=$(python ad/ad_utils.py --excute_program check_ad_origin_hive --partition ${today} --hh 10)
-  if [ $python_return_code -eq 0 ]; then
-    echo "Python程序返回0,退出循环。"
+  elapsed=$(($(date +%s -d "${start_time}") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
+
+  if [ "$python_return_code" -eq 0 ]; then
     break
   fi
   echo "Python程序返回非0值,等待五分钟后再次调用。"
@@ -36,12 +41,13 @@ while true; do
   current_hour=$(date +%H)
   current_minute=$(date +%M)
   if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
-    echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
-    msg="广告特征数据校验失败,大数据分区没有数据: ${today}10"
-    /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
+    msg="大数据数据生产校验失败 \n\t分区: ${today}10"
+    echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}"
+    /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
     exit 1
   fi
 done
+echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
 
 
 # 2 原始特征生成
@@ -54,13 +60,15 @@ beginStr:${today_early_1}00 endStr:${today}10 \
 savePath:${originDataSavePath} \
 table:alg_recsys_ad_sample_all filterHours:00,01,02,03,04,05,06,07 \
 idDefaultValue:0.01
+
+elapsed=$(($(date +%s -d "${start_time}") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
 if [ $? -ne 0 ]; then
-   echo "Spark原始样本生产任务执行失败"
-   msg="广告特征数据生成失败,Spark原始样本生产任务执行失败"
-   /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
+   msg="Spark原始样本生产任务执行失败"
+   echo "$LOG_PREFIX -- 原始样本生产 -- $msg: 耗时 $elapsed"
+   /root/anaconda3/bin/python ad/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
    exit 1
 else
-    echo "spark原始样本生产执行成功"
+   echo "$LOG_PREFIX -- 原始样本生产 -- Spark原始样本生产任务执行成功: 耗时 $elapsed"
 fi
 
 
@@ -73,13 +81,15 @@ beginStr:${today_early_1} endStr:${today} repartition:100 \
 filterNames:adid_,targeting_conversion_ \
 readPath:${originDataSavePath} \
 savePath:${bucketFeatureSavePath}
+
+elapsed=$(($(date +%s -d "${start_time}") - $(date +%s -d "+%Y-%m-%d %H:%M:%S")))
 if [ $? -ne 0 ]; then
-   echo "Spark特征分桶处理任务执行失败"
-   msg="广告特征分桶失败,Spark特征分桶处理任务执行失败"
+   msg="Spark特征分桶处理任务执行失败"
+   echo "$LOG_PREFIX -- 特征分桶处理任务 -- $msg: 耗时 $elapsed"
    /root/anaconda3/bin/python ad/ad_monitor_util.py ${msg}
    exit 1
 else
-   echo "spark特征分桶处理执行成功"
+   echo "$LOG_PREFIX -- 特征分桶处理任务 -- spark特征分桶处理执行成功: 耗时 $elapsed"
 fi
 
 

+ 0 - 12
ad/02_predict_check.sh

@@ -1,12 +0,0 @@
-#!/bin/sh
-
-set -x
-
-model_name=$1
-dim=$2
-
-PROJECT_HOME=/root/zhaohp/recommend-emr-dataprocess
-
-cat ${PROJECT_HOME}/tmpfile.txt | /root/sunmingze/alphaFM/bin/fm_predict -m ${PROJECT_HOME}/model/${model_name} -dim ${dim} -core 8 -out ${PROJECT_HOME}/predict/tmpfile.txt
-cat ${PROJECT_HOME}/predict/tmpfile.txt
-