Browse Source

mapPartitions&word2vec

jch 4 months ago
parent
commit
e8827c81a6

+ 15 - 36
src/main/java/examples/utils/SimilarityUtils.java

@@ -6,10 +6,6 @@ import lombok.extern.slf4j.Slf4j;
 
 import java.io.IOException;
 import java.util.List;
-import java.util.concurrent.Executors;
-import java.util.concurrent.ScheduledExecutorService;
-import java.util.concurrent.TimeUnit;
-import java.util.concurrent.atomic.AtomicBoolean;
 
 /**
  * @author dyp
@@ -20,45 +16,28 @@ public final class SimilarityUtils {
 
     private static Word2Vec vec = new Word2Vec();
 
-    private static final AtomicBoolean modelLoaded = new AtomicBoolean(false);
-    private static final AtomicBoolean init = new AtomicBoolean(false);
-
-    private static final ScheduledExecutorService scheduler = Executors.newSingleThreadScheduledExecutor();
-
     public static void init() {
-        if (init.compareAndSet(false, true)) {
-            Segment.getWords("1");
-            scheduler.scheduleAtFixedRate(() -> {
-                try {
-                    long start = System.currentTimeMillis();
-                    String endpoint = PropertiesUtil.getString("oss.endpoint");
-                    String bucketName = "art-recommend";
-                    String path = "similarity/word2vec/Google_word2vec_zhwiki210720_300d.bin";
-                    String accessKeyId = "LTAIP6x1l3DXfSxm";
-                    String accessKetSecret = "KbTaM9ars4OX3PMS6Xm7rtxGr1FLon";
-                    Word2Vec temp = new Word2Vec();
-                    temp.loadGoogleModelFromOss(endpoint, bucketName, path, accessKeyId, accessKetSecret);
-                    vec = temp;
-                    long end = System.currentTimeMillis();
-
-                    if (modelLoaded.compareAndSet(false, true)) {
-                        scheduler.shutdown();
-                        log.info("Model loaded successfully cost {}. Scheduled tasks cancelled.", end - start);
-                    }
-
-                } catch (IOException e) {
-                    log.error("loadGoogleModelFromOss error", e);
-                }
-            }, 0, 5, TimeUnit.MINUTES);
+        Segment.getWords("1");
+        try {
+            long start = System.currentTimeMillis();
+            String endpoint = "oss-cn-hangzhou-internal.aliyuncs.com";
+            String bucketName = "art-recommend";
+            String path = "similarity/word2vec/Google_word2vec_zhwiki210720_300d.bin";
+            String accessKeyId = "LTAIP6x1l3DXfSxm";
+            String accessKetSecret = "KbTaM9ars4OX3PMS6Xm7rtxGr1FLon";
+            Word2Vec temp = new Word2Vec();
+            temp.loadGoogleModelFromOss(endpoint, bucketName, path, accessKeyId, accessKetSecret);
+            vec = temp;
+            long end = System.currentTimeMillis();
+            log.info("Model loaded successfully cost {}. Scheduled tasks cancelled.", end - start);
+        } catch (IOException e) {
+            log.error("loadGoogleModelFromOss error", e);
         }
     }
 
-
     public static float word2VecSimilarity(String str1, String str2) {
         List<String> words1 = Segment.getWords(str1);
         List<String> words2 = Segment.getWords(str2);
         return vec.sentenceSimilarity(words1, words2);
     }
-
-
 }

+ 232 - 229
src/main/scala/com/aliyun/odps/spark/examples/makedata_recsys_r_rate/makedata_recsys_61_str2ros_originData_20241209.scala

@@ -57,257 +57,260 @@ object makedata_recsys_61_str2ros_originData_20241209 {
           val label = if (record.isNull(whatLabel)) "0" else record.getString(whatLabel)
           "1".equals(label) || new Random().nextDouble() <= fuSampleRate
         })
-        .map(record => {
-          val featureMap = new JSONObject()
-
-          // a 视频特征
-          val b1: JSONObject = getJsonObject(record, "b1_feature")
-          val b2: JSONObject = getJsonObject(record, "b2_feature")
-          val b3: JSONObject = getJsonObject(record, "b3_feature")
-          val b6: JSONObject = getJsonObject(record, "b6_feature")
-          val b7: JSONObject = getJsonObject(record, "b7_feature")
-
-          val b8: JSONObject = getJsonObject(record, "b8_feature")
-          val b9: JSONObject = getJsonObject(record, "b9_feature")
-          val b10: JSONObject = getJsonObject(record, "b10_feature")
-          val b11: JSONObject = getJsonObject(record, "b11_feature")
-          val b12: JSONObject = getJsonObject(record, "b12_feature")
-          val b13: JSONObject = getJsonObject(record, "b13_feature")
-          val b17: JSONObject = getJsonObject(record, "b17_feature")
-          val b18: JSONObject = getJsonObject(record, "b18_feature")
-          val b19: JSONObject = getJsonObject(record, "b19_feature")
-
-          val origin_data = List(
-            (b1, b2, b3, "b123"), (b1, b6, b7, "b167"),
-            (b8, b9, b10, "b8910"), (b11, b12, b13, "b111213"),
-            (b17, b18, b19, "b171819")
-          )
-          for ((b_1, b_2, b_3, prefix1) <- origin_data) {
-            for (prefix2 <- List(
-              "1h", "2h", "3h", "4h", "12h", "1d", "3d", "7d"
-            )) {
-              val exp = if (b_1.isEmpty) 0D else b_1.getIntValue("exp_pv_" + prefix2).toDouble
-              val share = if (b_2.isEmpty) 0D else b_2.getIntValue("share_pv_" + prefix2).toDouble
-              val returns = if (b_3.isEmpty) 0D else b_3.getIntValue("return_uv_" + prefix2).toDouble
-              val f1 = RankExtractorFeature_20240530.calDiv(share, exp)
-              val f2 = RankExtractorFeature_20240530.calLog(share)
-              val f3 = RankExtractorFeature_20240530.calDiv(returns, exp)
-              val f4 = RankExtractorFeature_20240530.calLog(returns)
-              val f5 = f3 * f4
-              val f6 = RankExtractorFeature_20240530.calDiv(returns, share)
-              featureMap.put(prefix1 + "_" + prefix2 + "_" + "STR", f1)
-              featureMap.put(prefix1 + "_" + prefix2 + "_" + "log(share)", f2)
-              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROV", f3)
-              featureMap.put(prefix1 + "_" + prefix2 + "_" + "log(return)", f4)
-              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROV*log(return)", f5)
-              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROS", f6)
+        .mapPartitions(p => {
+          SimilarityUtils.init()
+          p.map(record => {
+            val featureMap = new JSONObject()
+
+            // a 视频特征
+            val b1: JSONObject = getJsonObject(record, "b1_feature")
+            val b2: JSONObject = getJsonObject(record, "b2_feature")
+            val b3: JSONObject = getJsonObject(record, "b3_feature")
+            val b6: JSONObject = getJsonObject(record, "b6_feature")
+            val b7: JSONObject = getJsonObject(record, "b7_feature")
+
+            val b8: JSONObject = getJsonObject(record, "b8_feature")
+            val b9: JSONObject = getJsonObject(record, "b9_feature")
+            val b10: JSONObject = getJsonObject(record, "b10_feature")
+            val b11: JSONObject = getJsonObject(record, "b11_feature")
+            val b12: JSONObject = getJsonObject(record, "b12_feature")
+            val b13: JSONObject = getJsonObject(record, "b13_feature")
+            val b17: JSONObject = getJsonObject(record, "b17_feature")
+            val b18: JSONObject = getJsonObject(record, "b18_feature")
+            val b19: JSONObject = getJsonObject(record, "b19_feature")
+
+            val origin_data = List(
+              (b1, b2, b3, "b123"), (b1, b6, b7, "b167"),
+              (b8, b9, b10, "b8910"), (b11, b12, b13, "b111213"),
+              (b17, b18, b19, "b171819")
+            )
+            for ((b_1, b_2, b_3, prefix1) <- origin_data) {
+              for (prefix2 <- List(
+                "1h", "2h", "3h", "4h", "12h", "1d", "3d", "7d"
+              )) {
+                val exp = if (b_1.isEmpty) 0D else b_1.getIntValue("exp_pv_" + prefix2).toDouble
+                val share = if (b_2.isEmpty) 0D else b_2.getIntValue("share_pv_" + prefix2).toDouble
+                val returns = if (b_3.isEmpty) 0D else b_3.getIntValue("return_uv_" + prefix2).toDouble
+                val f1 = RankExtractorFeature_20240530.calDiv(share, exp)
+                val f2 = RankExtractorFeature_20240530.calLog(share)
+                val f3 = RankExtractorFeature_20240530.calDiv(returns, exp)
+                val f4 = RankExtractorFeature_20240530.calLog(returns)
+                val f5 = f3 * f4
+                val f6 = RankExtractorFeature_20240530.calDiv(returns, share)
+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "STR", f1)
+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "log(share)", f2)
+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROV", f3)
+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "log(return)", f4)
+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROV*log(return)", f5)
+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROS", f6)
+              }
             }
-          }
 
-          val video_info: JSONObject = getJsonObject(record, "t_v_info_feature")
-          featureMap.put("total_time", if (video_info.containsKey("total_time")) video_info.getIntValue("total_time").toDouble else 0D)
-          featureMap.put("bit_rate", if (video_info.containsKey("bit_rate")) video_info.getIntValue("bit_rate").toDouble else 0D)
+            val video_info: JSONObject = getJsonObject(record, "t_v_info_feature")
+            featureMap.put("total_time", if (video_info.containsKey("total_time")) video_info.getIntValue("total_time").toDouble else 0D)
+            featureMap.put("bit_rate", if (video_info.containsKey("bit_rate")) video_info.getIntValue("bit_rate").toDouble else 0D)
 
-          val c1: JSONObject = getJsonObject(record, "c1_feature")
-          if (c1.nonEmpty) {
-            featureMap.put("playcnt_6h", if (c1.containsKey("playcnt_6h")) c1.getIntValue("playcnt_6h").toDouble else 0D)
-            featureMap.put("playcnt_1d", if (c1.containsKey("playcnt_1d")) c1.getIntValue("playcnt_1d").toDouble else 0D)
-            featureMap.put("playcnt_3d", if (c1.containsKey("playcnt_3d")) c1.getIntValue("playcnt_3d").toDouble else 0D)
-            featureMap.put("playcnt_7d", if (c1.containsKey("playcnt_7d")) c1.getIntValue("playcnt_7d").toDouble else 0D)
-          }
-          val c2: JSONObject = getJsonObject(record, "c2_feature")
-          if (c2.nonEmpty) {
-            featureMap.put("share_pv_12h", if (c2.containsKey("share_pv_12h")) c2.getIntValue("share_pv_12h").toDouble else 0D)
-            featureMap.put("share_pv_1d", if (c2.containsKey("share_pv_1d")) c2.getIntValue("share_pv_1d").toDouble else 0D)
-            featureMap.put("share_pv_3d", if (c2.containsKey("share_pv_3d")) c2.getIntValue("share_pv_3d").toDouble else 0D)
-            featureMap.put("share_pv_7d", if (c2.containsKey("share_pv_7d")) c2.getIntValue("share_pv_7d").toDouble else 0D)
-            featureMap.put("return_uv_12h", if (c2.containsKey("return_uv_12h")) c2.getIntValue("return_uv_12h").toDouble else 0D)
-            featureMap.put("return_uv_1d", if (c2.containsKey("return_uv_1d")) c2.getIntValue("return_uv_1d").toDouble else 0D)
-            featureMap.put("return_uv_3d", if (c2.containsKey("return_uv_3d")) c2.getIntValue("return_uv_3d").toDouble else 0D)
-            featureMap.put("return_uv_7d", if (c2.containsKey("return_uv_7d")) c2.getIntValue("return_uv_7d").toDouble else 0D)
-          }
+            val c1: JSONObject = getJsonObject(record, "c1_feature")
+            if (c1.nonEmpty) {
+              featureMap.put("playcnt_6h", if (c1.containsKey("playcnt_6h")) c1.getIntValue("playcnt_6h").toDouble else 0D)
+              featureMap.put("playcnt_1d", if (c1.containsKey("playcnt_1d")) c1.getIntValue("playcnt_1d").toDouble else 0D)
+              featureMap.put("playcnt_3d", if (c1.containsKey("playcnt_3d")) c1.getIntValue("playcnt_3d").toDouble else 0D)
+              featureMap.put("playcnt_7d", if (c1.containsKey("playcnt_7d")) c1.getIntValue("playcnt_7d").toDouble else 0D)
+            }
+            val c2: JSONObject = getJsonObject(record, "c2_feature")
+            if (c2.nonEmpty) {
+              featureMap.put("share_pv_12h", if (c2.containsKey("share_pv_12h")) c2.getIntValue("share_pv_12h").toDouble else 0D)
+              featureMap.put("share_pv_1d", if (c2.containsKey("share_pv_1d")) c2.getIntValue("share_pv_1d").toDouble else 0D)
+              featureMap.put("share_pv_3d", if (c2.containsKey("share_pv_3d")) c2.getIntValue("share_pv_3d").toDouble else 0D)
+              featureMap.put("share_pv_7d", if (c2.containsKey("share_pv_7d")) c2.getIntValue("share_pv_7d").toDouble else 0D)
+              featureMap.put("return_uv_12h", if (c2.containsKey("return_uv_12h")) c2.getIntValue("return_uv_12h").toDouble else 0D)
+              featureMap.put("return_uv_1d", if (c2.containsKey("return_uv_1d")) c2.getIntValue("return_uv_1d").toDouble else 0D)
+              featureMap.put("return_uv_3d", if (c2.containsKey("return_uv_3d")) c2.getIntValue("return_uv_3d").toDouble else 0D)
+              featureMap.put("return_uv_7d", if (c2.containsKey("return_uv_7d")) c2.getIntValue("return_uv_7d").toDouble else 0D)
+            }
 
-          val title = if (video_info.containsKey("title")) video_info.getString("title") else ""
-          if (!title.equals("")) {
-            for (key_feature <- List("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
-              val c34567: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
-                JSON.parseObject(record.getString(key_feature))
-              for (key_time <- List("tags_1d", "tags_3d", "tags_7d")) {
-                val tags = if (c34567.containsKey(key_time)) c34567.getString(key_time) else ""
-                if (!tags.equals("")) {
-                  val (f1, f2, f3, f4) = funcC34567ForTagsW2V(tags, title)
-                  featureMap.put(key_feature + "_" + key_time + "_matchnum", f1)
-                  featureMap.put(key_feature + "_" + key_time + "_maxscore", f3)
-                  featureMap.put(key_feature + "_" + key_time + "_avgscore", f4)
+            val title = if (video_info.containsKey("title")) video_info.getString("title") else ""
+            if (!title.equals("")) {
+              for (key_feature <- List("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
+                val c34567: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
+                  JSON.parseObject(record.getString(key_feature))
+                for (key_time <- List("tags_1d", "tags_3d", "tags_7d")) {
+                  val tags = if (c34567.containsKey(key_time)) c34567.getString(key_time) else ""
+                  if (!tags.equals("")) {
+                    val (f1, f2, f3, f4) = funcC34567ForTagsW2V(tags, title)
+                    featureMap.put(key_feature + "_" + key_time + "_matchnum", f1)
+                    featureMap.put(key_feature + "_" + key_time + "_maxscore", f3)
+                    featureMap.put(key_feature + "_" + key_time + "_avgscore", f4)
+                  }
                 }
               }
             }
-          }
 
-          val vid = if (record.isNull("vid")) "" else record.getString("vid")
-          if (!vid.equals("")) {
-            for (key_feature <- List("c8_feature", "c9_feature")) {
-              val c89: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
-                JSON.parseObject(record.getString(key_feature))
-              for (key_action <- List("share", "return")) {
-                val cfListStr = if (c89.containsKey(key_action)) c89.getString(key_action) else ""
-                if (!cfListStr.equals("")) {
-                  val cfMap = cfListStr.split(",").map(r => {
-                    val rList = r.split(":")
-                    (rList(0), (rList(1), rList(2), rList(3)))
-                  }).toMap
-                  if (cfMap.contains(vid)) {
-                    val (score, num, rank) = cfMap(vid)
-                    featureMap.put(key_feature + "_" + key_action + "_score", score.toDouble)
-                    featureMap.put(key_feature + "_" + key_action + "_num", num.toDouble)
-                    featureMap.put(key_feature + "_" + key_action + "_rank", 1.0 / rank.toDouble)
+            val vid = if (record.isNull("vid")) "" else record.getString("vid")
+            if (!vid.equals("")) {
+              for (key_feature <- List("c8_feature", "c9_feature")) {
+                val c89: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
+                  JSON.parseObject(record.getString(key_feature))
+                for (key_action <- List("share", "return")) {
+                  val cfListStr = if (c89.containsKey(key_action)) c89.getString(key_action) else ""
+                  if (!cfListStr.equals("")) {
+                    val cfMap = cfListStr.split(",").map(r => {
+                      val rList = r.split(":")
+                      (rList(0), (rList(1), rList(2), rList(3)))
+                    }).toMap
+                    if (cfMap.contains(vid)) {
+                      val (score, num, rank) = cfMap(vid)
+                      featureMap.put(key_feature + "_" + key_action + "_score", score.toDouble)
+                      featureMap.put(key_feature + "_" + key_action + "_num", num.toDouble)
+                      featureMap.put(key_feature + "_" + key_action + "_rank", 1.0 / rank.toDouble)
+                    }
                   }
                 }
               }
             }
-          }
-
-          val d1: JSONObject = getJsonObject(record, "d1_feature")
-          if (d1.nonEmpty) {
-            featureMap.put("d1_exp", if (d1.containsKey("exp")) d1.getString("exp").toDouble else 0D)
-            featureMap.put("d1_return_n", if (d1.containsKey("return_n")) d1.getString("return_n").toDouble else 0D)
-            featureMap.put("d1_rovn", if (d1.containsKey("rovn")) d1.getString("rovn").toDouble else 0D)
-          }
 
-          // ************* new feature *************
-          val shortPeriod = List("1h", "2h", "4h", "6h", "12h", "24h", "7d")
-          val middlePeriod = List("14d", "30d")
-          val longPeriod = List("7d", "35d", "90d", "365d")
-          val vidStatFeat = List(
-            ("b20", shortPeriod, getJsonObject(record, "b20_feature")), // cate2_feature
-            ("b21", shortPeriod, getJsonObject(record, "b21_feature")), // cate1_feature
-            ("b22", shortPeriod, getJsonObject(record, "b22_feature")), // source_feature
-            ("b28", shortPeriod, getJsonObject(record, "b28_feature")), // sence_type_feature
-            ("b23", middlePeriod, getJsonObject(record, "b23_feature")), // cate2_feature_day
-            ("b24", middlePeriod, getJsonObject(record, "b24_feature")), // cate1_feature_day
-            ("b25", middlePeriod, getJsonObject(record, "b25_feature")), // source_feature_day
-            ("b26", longPeriod, getJsonObject(record, "b26_feature")), // unionid_feature_day
-            ("b27", longPeriod, getJsonObject(record, "b27_feature")) // vid_feature_day
-          )
-          for ((featType, featPeriod, featData) <- vidStatFeat) {
-            for (period <- featPeriod) {
-              // val view = if (featData.isEmpty) 0D else featData.getDoubleValue("view_" + period)
-              val share = if (featData.isEmpty) 0D else featData.getDoubleValue("share_" + period)
-              val return_ = if (featData.isEmpty) 0D else featData.getDoubleValue("return_" + period)
-              val view_hasreturn = if (featData.isEmpty) 0D else featData.getDoubleValue("view_hasreturn_" + period)
-              val share_hasreturn = if (featData.isEmpty) 0D else featData.getDoubleValue("share_hasreturn_" + period)
-              val ros = if (featData.isEmpty) 0D else featData.getDoubleValue("ros_" + period)
-              val rov = if (featData.isEmpty) 0D else featData.getDoubleValue("rov_" + period)
-              val r_cnt = if (featData.isEmpty) 0D else featData.getDoubleValue("r_cnt_" + period)
-              val r_rate = if (featData.isEmpty) 0D else featData.getDoubleValue("r_rate_" + period)
-              val r_cnt4s = if (featData.isEmpty) 0D else featData.getDoubleValue("r_cnt4s_" + period)
-              val str = if (featData.isEmpty) 0D else featData.getDoubleValue("str_" + period)
-              // scale
-              // val view_s = RankExtractorFeature_20240530.calLog(view)
-              val share_s = RankExtractorFeature_20240530.calLog(share)
-              val return_s = RankExtractorFeature_20240530.calLog(return_)
-              val view_hasreturn_s = RankExtractorFeature_20240530.calLog(view_hasreturn)
-              val share_hasreturn_s = RankExtractorFeature_20240530.calLog(share_hasreturn)
-
-              // featureMap.put(featType + "_" + period + "_" + "view", view_s)
-              featureMap.put(featType + "_" + period + "_" + "share", share_s)
-              featureMap.put(featType + "_" + period + "_" + "return", return_s)
-              featureMap.put(featType + "_" + period + "_" + "view_hasreturn", view_hasreturn_s)
-              featureMap.put(featType + "_" + period + "_" + "share_hasreturn", share_hasreturn_s)
-              featureMap.put(featType + "_" + period + "_" + "ros", ros)
-              featureMap.put(featType + "_" + period + "_" + "rov", rov)
-              featureMap.put(featType + "_" + period + "_" + "r_cnt", r_cnt)
-              featureMap.put(featType + "_" + period + "_" + "r_rate", r_rate)
-              featureMap.put(featType + "_" + period + "_" + "r_cnt4s", r_cnt4s)
-              featureMap.put(featType + "_" + period + "_" + "str", str)
+            val d1: JSONObject = getJsonObject(record, "d1_feature")
+            if (d1.nonEmpty) {
+              featureMap.put("d1_exp", if (d1.containsKey("exp")) d1.getString("exp").toDouble else 0D)
+              featureMap.put("d1_return_n", if (d1.containsKey("return_n")) d1.getString("return_n").toDouble else 0D)
+              featureMap.put("d1_rovn", if (d1.containsKey("rovn")) d1.getString("rovn").toDouble else 0D)
             }
-          }
 
-          // new cf
-          val d2345Data = List(
-            ("d2", "rosn", getJsonObject(record, "d2_feature")),
-            ("d3", "rosn", getJsonObject(record, "d3_feature")),
-            ("d4", "rovn", getJsonObject(record, "d4_feature")),
-            ("d5", "rovn", getJsonObject(record, "d5_feature"))
-          )
-          for ((featType, valType, featData) <- d2345Data) {
-            if (featData.nonEmpty) {
-              val exp = if (featData.containsKey("exp")) featData.getString("exp").toDouble else 0D
-              val return_n = if (featData.containsKey("return_n")) featData.getString("return_n").toDouble else 0D
-              val value = if (featData.containsKey(valType)) featData.getString(valType).toDouble else 0D
-              // scale
-              val exp_s = RankExtractorFeature_20240530.calLog(exp)
-              val return_n_s = RankExtractorFeature_20240530.calLog(return_n)
-              featureMap.put(featType + "_exp", exp_s)
-              featureMap.put(featType + "_return_n", return_n_s)
-              featureMap.put(featType + "_" + valType, value)
+            // ************* new feature *************
+            val shortPeriod = List("1h", "2h", "4h", "6h", "12h", "24h", "7d")
+            val middlePeriod = List("14d", "30d")
+            val longPeriod = List("7d", "35d", "90d", "365d")
+            val vidStatFeat = List(
+              ("b20", shortPeriod, getJsonObject(record, "b20_feature")), // cate2_feature
+              ("b21", shortPeriod, getJsonObject(record, "b21_feature")), // cate1_feature
+              ("b22", shortPeriod, getJsonObject(record, "b22_feature")), // source_feature
+              ("b28", shortPeriod, getJsonObject(record, "b28_feature")), // sence_type_feature
+              ("b23", middlePeriod, getJsonObject(record, "b23_feature")), // cate2_feature_day
+              ("b24", middlePeriod, getJsonObject(record, "b24_feature")), // cate1_feature_day
+              ("b25", middlePeriod, getJsonObject(record, "b25_feature")), // source_feature_day
+              ("b26", longPeriod, getJsonObject(record, "b26_feature")), // unionid_feature_day
+              ("b27", longPeriod, getJsonObject(record, "b27_feature")) // vid_feature_day
+            )
+            for ((featType, featPeriod, featData) <- vidStatFeat) {
+              for (period <- featPeriod) {
+                // val view = if (featData.isEmpty) 0D else featData.getDoubleValue("view_" + period)
+                val share = if (featData.isEmpty) 0D else featData.getDoubleValue("share_" + period)
+                val return_ = if (featData.isEmpty) 0D else featData.getDoubleValue("return_" + period)
+                val view_hasreturn = if (featData.isEmpty) 0D else featData.getDoubleValue("view_hasreturn_" + period)
+                val share_hasreturn = if (featData.isEmpty) 0D else featData.getDoubleValue("share_hasreturn_" + period)
+                val ros = if (featData.isEmpty) 0D else featData.getDoubleValue("ros_" + period)
+                val rov = if (featData.isEmpty) 0D else featData.getDoubleValue("rov_" + period)
+                val r_cnt = if (featData.isEmpty) 0D else featData.getDoubleValue("r_cnt_" + period)
+                val r_rate = if (featData.isEmpty) 0D else featData.getDoubleValue("r_rate_" + period)
+                val r_cnt4s = if (featData.isEmpty) 0D else featData.getDoubleValue("r_cnt4s_" + period)
+                val str = if (featData.isEmpty) 0D else featData.getDoubleValue("str_" + period)
+                // scale
+                // val view_s = RankExtractorFeature_20240530.calLog(view)
+                val share_s = RankExtractorFeature_20240530.calLog(share)
+                val return_s = RankExtractorFeature_20240530.calLog(return_)
+                val view_hasreturn_s = RankExtractorFeature_20240530.calLog(view_hasreturn)
+                val share_hasreturn_s = RankExtractorFeature_20240530.calLog(share_hasreturn)
+
+                // featureMap.put(featType + "_" + period + "_" + "view", view_s)
+                featureMap.put(featType + "_" + period + "_" + "share", share_s)
+                featureMap.put(featType + "_" + period + "_" + "return", return_s)
+                featureMap.put(featType + "_" + period + "_" + "view_hasreturn", view_hasreturn_s)
+                featureMap.put(featType + "_" + period + "_" + "share_hasreturn", share_hasreturn_s)
+                featureMap.put(featType + "_" + period + "_" + "ros", ros)
+                featureMap.put(featType + "_" + period + "_" + "rov", rov)
+                featureMap.put(featType + "_" + period + "_" + "r_cnt", r_cnt)
+                featureMap.put(featType + "_" + period + "_" + "r_rate", r_rate)
+                featureMap.put(featType + "_" + period + "_" + "r_cnt4s", r_cnt4s)
+                featureMap.put(featType + "_" + period + "_" + "str", str)
+              }
             }
-          }
 
-          if (!vid.equals("")) {
-            val idScoreObj = getJsonObject(getJsonObject(record, "d6_feature"), "vids", "scores")
-            if (idScoreObj.nonEmpty && idScoreObj.containsKey(vid)) {
-              val score = idScoreObj.getString(vid).toDouble
-              featureMap.put("d6", score)
+            // new cf
+            val d2345Data = List(
+              ("d2", "rosn", getJsonObject(record, "d2_feature")),
+              ("d3", "rosn", getJsonObject(record, "d3_feature")),
+              ("d4", "rovn", getJsonObject(record, "d4_feature")),
+              ("d5", "rovn", getJsonObject(record, "d5_feature"))
+            )
+            for ((featType, valType, featData) <- d2345Data) {
+              if (featData.nonEmpty) {
+                val exp = if (featData.containsKey("exp")) featData.getString("exp").toDouble else 0D
+                val return_n = if (featData.containsKey("return_n")) featData.getString("return_n").toDouble else 0D
+                val value = if (featData.containsKey(valType)) featData.getString(valType).toDouble else 0D
+                // scale
+                val exp_s = RankExtractorFeature_20240530.calLog(exp)
+                val return_n_s = RankExtractorFeature_20240530.calLog(return_n)
+                featureMap.put(featType + "_exp", exp_s)
+                featureMap.put(featType + "_return_n", return_n_s)
+                featureMap.put(featType + "_" + valType, value)
+              }
             }
-          }
 
-          // head video & rank video
-          val headVideo = getJsonObject(record, "v2_feature")
-          val rankVideo = getJsonObject(record, "v1_feature")
-          if (headVideo.nonEmpty && rankVideo.nonEmpty) {
-          }
+            if (!vid.equals("")) {
+              val idScoreObj = getJsonObject(getJsonObject(record, "d6_feature"), "vids", "scores")
+              if (idScoreObj.nonEmpty && idScoreObj.containsKey(vid)) {
+                val score = idScoreObj.getString(vid).toDouble
+                featureMap.put("d6", score)
+              }
+            }
 
-          /*
-          视频特征: 5*6*5 = 240个
-                    曝光使用pv 分享使用pv 回流使用uv --> 1h 2h 3h 4h 12h 1d 3d 7d
-                    STR log(share) ROV log(return) ROV*log(return) ROS
-                    整体、整体曝光对应、推荐非冷启root、推荐冷启root、分省份root
-          视频基础: 2个   视频时长、比特率
-          用户: 4+8 = 12个
-                    播放次数 --> 6h 1d 3d 7d --> 4个
-                    带回来的分享pv 回流uv --> 12h 1d 3d 7d --> 8个
-          人+vid-title:  5*3*3 = 45
-                    播放点/回流点/分享点/累积分享/累积回流 --> 1d 3d 7d --> 匹配数量 语义最高相似度分 语义平均相似度分 --> 45个
-          人+vid-cf: 2*3*3 = 12
-                    基于分享行为/基于回流行为 -->  “分享cf”+”回流点击cf“ 相似分 相似数量 相似rank的倒数 --> 12个
-          头部视频:  3
-                    曝光 回流 ROVn 3个特征
-          场景:     小时 星期 apptype city province pagesource 机器型号
-          总量:     240+2+12+45+12+3 = 314
-          ---------------------------------------------------------------
-          视频特征:(4*7+3*2+2*4)*10 = 420个
-          CF: 13个
-
-
-           */
-
-
-          //4 处理label信息。
-          val labels = new JSONObject
-          for (labelKey <- List(
-            "is_play", "is_share", "is_return", "noself_is_return", "return_uv", "noself_return_uv", "total_return_uv",
-            "share_pv", "total_share_uv", "view_24h", "total_return_uv_new"
-          )) {
-            if (!record.isNull(labelKey)) {
-              labels.put(labelKey, record.getString(labelKey))
+            // head video & rank video
+            val headVideo = getJsonObject(record, "v2_feature")
+            val rankVideo = getJsonObject(record, "v1_feature")
+            if (headVideo.nonEmpty && rankVideo.nonEmpty) {
             }
-          }
-          //5 处理log key表头。
-          val apptype = record.getString("apptype")
-          val pagesource = record.getString("pagesource")
-          val mid = record.getString("mid")
-          // vid 已经提取了
-          val ts = record.getString("ts")
-          val abcode = record.getString("abcode")
-          val level = if (record.isNull("level")) "0" else record.getString("level")
-          val logKey = (apptype, pagesource, mid, vid, ts, abcode, level).productIterator.mkString(",")
-          val labelKey = labels.toString()
-          // val featureKey = featureMap.toString()
-          val featureKey = truncateDecimal(featureMap).toString()
-          //6 拼接数据,保存。
-          logKey + "\t" + labelKey + "\t" + featureKey
 
+            /*
+            视频特征: 5*6*5 = 240个
+                      曝光使用pv 分享使用pv 回流使用uv --> 1h 2h 3h 4h 12h 1d 3d 7d
+                      STR log(share) ROV log(return) ROV*log(return) ROS
+                      整体、整体曝光对应、推荐非冷启root、推荐冷启root、分省份root
+            视频基础: 2个   视频时长、比特率
+            用户: 4+8 = 12个
+                      播放次数 --> 6h 1d 3d 7d --> 4个
+                      带回来的分享pv 回流uv --> 12h 1d 3d 7d --> 8个
+            人+vid-title:  5*3*3 = 45
+                      播放点/回流点/分享点/累积分享/累积回流 --> 1d 3d 7d --> 匹配数量 语义最高相似度分 语义平均相似度分 --> 45个
+            人+vid-cf: 2*3*3 = 12
+                      基于分享行为/基于回流行为 -->  “分享cf”+”回流点击cf“ 相似分 相似数量 相似rank的倒数 --> 12个
+            头部视频:  3
+                      曝光 回流 ROVn 3个特征
+            场景:     小时 星期 apptype city province pagesource 机器型号
+            总量:     240+2+12+45+12+3 = 314
+            ---------------------------------------------------------------
+            视频特征:(4*7+3*2+2*4)*10 = 420个
+            CF: 13个
+
+
+             */
+
+
+            //4 处理label信息。
+            val labels = new JSONObject
+            for (labelKey <- List(
+              "is_play", "is_share", "is_return", "noself_is_return", "return_uv", "noself_return_uv", "total_return_uv",
+              "share_pv", "total_share_uv", "view_24h", "total_return_uv_new"
+            )) {
+              if (!record.isNull(labelKey)) {
+                labels.put(labelKey, record.getString(labelKey))
+              }
+            }
+            //5 处理log key表头。
+            val apptype = record.getString("apptype")
+            val pagesource = record.getString("pagesource")
+            val mid = record.getString("mid")
+            // vid 已经提取了
+            val ts = record.getString("ts")
+            val abcode = record.getString("abcode")
+            val level = if (record.isNull("level")) "0" else record.getString("level")
+            val logKey = (apptype, pagesource, mid, vid, ts, abcode, level).productIterator.mkString(",")
+            val labelKey = labels.toString()
+            // val featureKey = featureMap.toString()
+            val featureKey = truncateDecimal(featureMap).toString()
+            //6 拼接数据,保存。
+            logKey + "\t" + labelKey + "\t" + featureKey
+
+          })
         })
 
       // 4 保存数据到hdfs