|  | @@ -0,0 +1,113 @@
 | 
											
												
													
														|  | 
 |  | +package com.aliyun.odps.spark.examples.makedata_ad.v20240718
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +import com.alibaba.fastjson.JSON
 | 
											
												
													
														|  | 
 |  | +import com.aliyun.odps.spark.examples.myUtils.{MyHdfsUtils, ParamUtils}
 | 
											
												
													
														|  | 
 |  | +import org.apache.hadoop.io.compress.GzipCodec
 | 
											
												
													
														|  | 
 |  | +import org.apache.spark.Partitioner
 | 
											
												
													
														|  | 
 |  | +import org.apache.spark.sql.SparkSession
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +import scala.collection.JavaConversions._
 | 
											
												
													
														|  | 
 |  | +import scala.collection.mutable.ArrayBuffer
 | 
											
												
													
														|  | 
 |  | +import scala.io.Source
 | 
											
												
													
														|  | 
 |  | +/*
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | + */
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +object makedata_ad_32_bucket_20250110 {
 | 
											
												
													
														|  | 
 |  | +  class FeaturePartitioner(featureNames: Map[String, Int]) extends Partitioner {
 | 
											
												
													
														|  | 
 |  | +    override def numPartitions: Int = featureNames.size
 | 
											
												
													
														|  | 
 |  | +    override def getPartition(key: Any): Int = {
 | 
											
												
													
														|  | 
 |  | +      val featureName = key.asInstanceOf[String]
 | 
											
												
													
														|  | 
 |  | +      featureNames.getOrElse(featureName, 0)
 | 
											
												
													
														|  | 
 |  | +    }
 | 
											
												
													
														|  | 
 |  | +  }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +  def main(args: Array[String]): Unit = {
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    val spark = SparkSession
 | 
											
												
													
														|  | 
 |  | +      .builder()
 | 
											
												
													
														|  | 
 |  | +      .appName(this.getClass.getName)
 | 
											
												
													
														|  | 
 |  | +      .getOrCreate()
 | 
											
												
													
														|  | 
 |  | +    val sc = spark.sparkContext
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    // 1 读取参数
 | 
											
												
													
														|  | 
 |  | +    val param = ParamUtils.parseArgs(args)
 | 
											
												
													
														|  | 
 |  | +    val readPath = param.getOrElse("readPath", "/dw/recommend/model/31_ad_sample_data/20240620*")
 | 
											
												
													
														|  | 
 |  | +    val savePath = param.getOrElse("savePath", "/dw/recommend/model/32_bucket_data/")
 | 
											
												
													
														|  | 
 |  | +    val fileName = param.getOrElse("fileName", "20240620_100")
 | 
											
												
													
														|  | 
 |  | +    val sampleRate = param.getOrElse("sampleRate", "1.0").toDouble
 | 
											
												
													
														|  | 
 |  | +    val bucketNum = param.getOrElse("bucketNum", "100").toInt
 | 
											
												
													
														|  | 
 |  | +    val featureNameFile = param.getOrElse("featureNameFile", "20240718_ad_feature_name.txt");
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    val loader = getClass.getClassLoader
 | 
											
												
													
														|  | 
 |  | +    val resourceUrl = loader.getResource(featureNameFile)
 | 
											
												
													
														|  | 
 |  | +    val featureNameContent =
 | 
											
												
													
														|  | 
 |  | +      if (resourceUrl != null) {
 | 
											
												
													
														|  | 
 |  | +        val content = Source.fromURL(resourceUrl).getLines().mkString("\n")
 | 
											
												
													
														|  | 
 |  | +        Source.fromURL(resourceUrl).close()
 | 
											
												
													
														|  | 
 |  | +        content
 | 
											
												
													
														|  | 
 |  | +      } else {
 | 
											
												
													
														|  | 
 |  | +        ""
 | 
											
												
													
														|  | 
 |  | +      }
 | 
											
												
													
														|  | 
 |  | +    println(featureNameContent)
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    val featureNames = featureNameContent.split("\n")
 | 
											
												
													
														|  | 
 |  | +      .map(r=> r.replace(" ", "").replaceAll("\n", ""))
 | 
											
												
													
														|  | 
 |  | +      .filter(r=> r.nonEmpty).toList
 | 
											
												
													
														|  | 
 |  | +    val featureNamesSet = featureNames.toSet
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    val data = sc.textFile(readPath)
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    // 2 读取特征数据、打平后分区
 | 
											
												
													
														|  | 
 |  | +    val flattenData = data
 | 
											
												
													
														|  | 
 |  | +      .sample(false, sampleRate)
 | 
											
												
													
														|  | 
 |  | +      .flatMap(r => {
 | 
											
												
													
														|  | 
 |  | +        val rList = r.split("\t")
 | 
											
												
													
														|  | 
 |  | +        val jsons = JSON.parseObject(rList(2))
 | 
											
												
													
														|  | 
 |  | +        jsons.map(r => (r._1, jsons.getDoubleValue(r._1)))
 | 
											
												
													
														|  | 
 |  | +      }).filter(r => r._2 > 1E-8)
 | 
											
												
													
														|  | 
 |  | +      .filter(r => featureNamesSet.contains(r._1))
 | 
											
												
													
														|  | 
 |  | +      .partitionBy(new FeaturePartitioner(featureNames.zipWithIndex.toMap))
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    // 3 计算分桶值
 | 
											
												
													
														|  | 
 |  | +    val resultRdd = flattenData.mapPartitions(iter => {
 | 
											
												
													
														|  | 
 |  | +      if (iter.isEmpty) {
 | 
											
												
													
														|  | 
 |  | +        Array[String]().iterator
 | 
											
												
													
														|  | 
 |  | +      } else {
 | 
											
												
													
														|  | 
 |  | +        val headValue = iter.next()
 | 
											
												
													
														|  | 
 |  | +        val key = headValue._1
 | 
											
												
													
														|  | 
 |  | +        val sortedValues = (Array(headValue._2) ++ iter.map(_._2).toArray).sorted
 | 
											
												
													
														|  | 
 |  | +        val len = sortedValues.length
 | 
											
												
													
														|  | 
 |  | +        val oneBucketNum = (len - 1) / (bucketNum - 1) + 1 // 确保每个桶至少有一个元素
 | 
											
												
													
														|  | 
 |  | +        val buffers = new ArrayBuffer[Double]()
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +        var lastBucketValue = sortedValues(0) // 记录上一个桶的切分点
 | 
											
												
													
														|  | 
 |  | +        for (j <- 0 until len by oneBucketNum) {
 | 
											
												
													
														|  | 
 |  | +          val d = sortedValues(j)
 | 
											
												
													
														|  | 
 |  | +          if (j > 0 && d != lastBucketValue) {
 | 
											
												
													
														|  | 
 |  | +            // 如果当前切分点不同于上一个切分点,则保存当前切分点
 | 
											
												
													
														|  | 
 |  | +            buffers += d
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          lastBucketValue = d // 更新上一个桶的切分点
 | 
											
												
													
														|  | 
 |  | +        }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +        // 最后一个桶的结束点应该是数组的最后一个元素
 | 
											
												
													
														|  | 
 |  | +        if (!buffers.contains(sortedValues.last)) {
 | 
											
												
													
														|  | 
 |  | +          buffers += sortedValues.last
 | 
											
												
													
														|  | 
 |  | +        }
 | 
											
												
													
														|  | 
 |  | +        Array(key + "\t" + bucketNum.toString + "\t" + buffers.mkString(",")).iterator
 | 
											
												
													
														|  | 
 |  | +      }
 | 
											
												
													
														|  | 
 |  | +    })
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    // 4 保存数据到hdfs
 | 
											
												
													
														|  | 
 |  | +    val hdfsPath = savePath + "/" + fileName
 | 
											
												
													
														|  | 
 |  | +    if (hdfsPath.nonEmpty && fileName.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
 | 
											
												
													
														|  | 
 |  | +      println("删除路径并开始数据写入:" + hdfsPath)
 | 
											
												
													
														|  | 
 |  | +      MyHdfsUtils.delete_hdfs_path(hdfsPath)
 | 
											
												
													
														|  | 
 |  | +      resultRdd.repartition(1).saveAsTextFile(hdfsPath, classOf[GzipCodec])
 | 
											
												
													
														|  | 
 |  | +    } else {
 | 
											
												
													
														|  | 
 |  | +      println("路径不合法,无法写入:" + hdfsPath)
 | 
											
												
													
														|  | 
 |  | +    }
 | 
											
												
													
														|  | 
 |  | +  }
 | 
											
												
													
														|  | 
 |  | +}
 |