|
@@ -0,0 +1,100 @@
|
|
|
+package com.aliyun.odps.spark.examples.makedata_recsys.v20250218
|
|
|
+
|
|
|
+import com.alibaba.fastjson.JSON
|
|
|
+import com.aliyun.odps.spark.examples.myUtils.{FileUtils, MyHdfsUtils, ParamUtils}
|
|
|
+import org.apache.hadoop.io.compress.GzipCodec
|
|
|
+import org.apache.spark.sql.SparkSession
|
|
|
+
|
|
|
+import scala.collection.JavaConversions._
|
|
|
+import scala.collection.mutable.ArrayBuffer
|
|
|
+
|
|
|
+/*
|
|
|
+
|
|
|
+ */
|
|
|
+
|
|
|
+object makedata_recsys_42_bucket_20250218 {
|
|
|
+ def main(args: Array[String]): Unit = {
|
|
|
+
|
|
|
+ val spark = SparkSession
|
|
|
+ .builder()
|
|
|
+ .appName(this.getClass.getName)
|
|
|
+ .getOrCreate()
|
|
|
+ val sc = spark.sparkContext
|
|
|
+
|
|
|
+
|
|
|
+ // 1 读取参数
|
|
|
+ val param = ParamUtils.parseArgs(args)
|
|
|
+ val readPath = param.getOrElse("readPath", "/dw/recommend/model/41_recsys_sample_data_v1/20240705*")
|
|
|
+ val savePath = param.getOrElse("savePath", "/dw/recommend/model/41_recsys_bucket/")
|
|
|
+ val fileName = param.getOrElse("fileName", "bucket_20250218_1237")
|
|
|
+ val bucketNum = param.getOrElse("bucketNum", "200").toInt
|
|
|
+ val featureNameFile = param.getOrElse("featureNameFile", "feature_name_20250218.txt")
|
|
|
+ val noBucketFeatureName = param.getOrElse("noBucketFeatureName", "").split(",").filter(r => r.nonEmpty).toList
|
|
|
+
|
|
|
+ val loader = getClass.getClassLoader
|
|
|
+ val resourceUrl = loader.getResource(featureNameFile)
|
|
|
+ val content = FileUtils.readFile(resourceUrl)
|
|
|
+ println(content)
|
|
|
+ val contentList = content.split("\n")
|
|
|
+ .map(r => r.replace(" ", "").replaceAll("\n", ""))
|
|
|
+ .filter(r => r.nonEmpty)
|
|
|
+ .toList
|
|
|
+
|
|
|
+ val data = sc.textFile(readPath)
|
|
|
+ println("问题数据数量:" + data.filter(r => r.split("\t").length != 3).count())
|
|
|
+ val data1 = data.map(r => {
|
|
|
+ val rList = r.split("\t")
|
|
|
+ val jsons = JSON.parseObject(rList(2))
|
|
|
+ val doubles = scala.collection.mutable.Map[String, Double]()
|
|
|
+ jsons.foreach(r => {
|
|
|
+ doubles.put(r._1, jsons.getDoubleValue(r._1))
|
|
|
+ })
|
|
|
+ doubles
|
|
|
+ }).repartition(20)
|
|
|
+
|
|
|
+ val result = new ArrayBuffer[String]()
|
|
|
+
|
|
|
+ for (i <- contentList.indices) {
|
|
|
+ println("特征:" + contentList(i))
|
|
|
+ val data2 = data1.map(r => r.getOrDefault(contentList(i), 0D)).filter(_ > 1E-8).collect().sorted
|
|
|
+ val len = data2.length
|
|
|
+ if (len == 0) {
|
|
|
+ result.add(contentList(i) + "\t" + bucketNum.toString + "\t" + "0")
|
|
|
+ } else if (noBucketFeatureName.nonEmpty && noBucketFeatureName.contains(contentList(i))) {
|
|
|
+ val data3 = data2.distinct.toList
|
|
|
+ result.add(contentList(i) + "\t" + bucketNum.toString + "\t" + data3.mkString(","))
|
|
|
+ } else {
|
|
|
+ val oneBucketNum = (len - 1) / (bucketNum - 1) + 1 // 确保每个桶至少有一个元素
|
|
|
+ val buffers = new ArrayBuffer[Double]()
|
|
|
+
|
|
|
+ var lastBucketValue = data2(0) // 记录上一个桶的切分点
|
|
|
+ for (j <- 0 until len by oneBucketNum) {
|
|
|
+ val d = data2(j)
|
|
|
+ if (j > 0 && d != lastBucketValue) {
|
|
|
+ // 如果当前切分点不同于上一个切分点,则保存当前切分点
|
|
|
+ buffers += d
|
|
|
+ }
|
|
|
+ lastBucketValue = d // 更新上一个桶的切分点
|
|
|
+ }
|
|
|
+
|
|
|
+ // 最后一个桶的结束点应该是数组的最后一个元素
|
|
|
+ if (!buffers.contains(data2.last)) {
|
|
|
+ buffers += data2.last
|
|
|
+ }
|
|
|
+ result.add(contentList(i) + "\t" + bucketNum.toString + "\t" + buffers.mkString(","))
|
|
|
+ }
|
|
|
+ }
|
|
|
+ val data3 = sc.parallelize(result)
|
|
|
+
|
|
|
+
|
|
|
+ // 4 保存数据到hdfs
|
|
|
+ val hdfsPath = savePath + "/" + fileName
|
|
|
+ if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
|
|
|
+ println("删除路径并开始数据写入:" + hdfsPath)
|
|
|
+ MyHdfsUtils.delete_hdfs_path(hdfsPath)
|
|
|
+ data3.repartition(1).saveAsTextFile(hdfsPath, classOf[GzipCodec])
|
|
|
+ } else {
|
|
|
+ println("路径不合法,无法写入:" + hdfsPath)
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|