|
@@ -12,6 +12,7 @@ source /root/anaconda3/bin/activate py37
|
|
|
|
|
|
|
|
|
|
|
|
+LOG_PREFIX=广告模型训练任务
|
|
|
HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
|
|
|
TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4
|
|
|
BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4
|
|
@@ -77,13 +78,13 @@ check_run_status() {
|
|
|
local step_end_time=$(date +%s)
|
|
|
local step_elapsed=$(($step_end_time - $step_start_time))
|
|
|
|
|
|
- if [ $status -ne 0 ]; then
|
|
|
- echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
|
|
|
+ if [ ${status} -ne 0 ]; then
|
|
|
+ echo "${LOG_PREFIX} -- ${step_name}失败: 耗时 ${step_elapsed}"
|
|
|
local elapsed=$(($step_end_time - $start_time))
|
|
|
- /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed" --top10 "${top10_msg}"
|
|
|
+ /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
|
|
|
exit 1
|
|
|
else
|
|
|
- echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
|
|
|
+ echo "${LOG_PREFIX} -- ${step_name}成功: 耗时 ${step_elapsed}"
|
|
|
fi
|
|
|
}
|
|
|
|
|
@@ -96,7 +97,7 @@ send_success_upload_msg(){
|
|
|
msg+="\n\t - 模型上传OSS中的路径: ${MODEL_OSS_PATH}/${model_name}.tar.gz"
|
|
|
|
|
|
local step_end_time=$(date +%s)
|
|
|
- local elapsed=$(($step_end_time - $start_time))
|
|
|
+ local elapsed=$((${step_end_time} - ${start_time}))
|
|
|
|
|
|
/root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level info --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}" --top10 "${top10_msg}"
|
|
|
}
|
|
@@ -107,13 +108,13 @@ init() {
|
|
|
local count=1
|
|
|
local current_data="$(date -d '2 days ago' +%Y%m%d)"
|
|
|
|
|
|
- while [[ $count -le 7 ]]; do
|
|
|
- date_key=$(date -d "$current_data" +%Y%m%d)
|
|
|
+ while [[ ${count} -le 7 ]]; do
|
|
|
+ date_key=$(date -d "${current_data}" +%Y%m%d)
|
|
|
|
|
|
- if [ $(is_not_holidays $date_key) -eq 1 ]; then
|
|
|
+ if [ $(is_not_holidays ${date_key}) -eq 1 ]; then
|
|
|
|
|
|
|
|
|
- date_keys+=("$date_key")
|
|
|
+ date_keys+=("${date_key}")
|
|
|
|
|
|
if [[ -z ${train_data_path} ]]; then
|
|
|
train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
|
|
@@ -124,7 +125,7 @@ init() {
|
|
|
else
|
|
|
echo "日期: ${date_key}是节日,跳过"
|
|
|
fi
|
|
|
- current_data=$(date -d "$current_data -1 day" +%Y%m%d)
|
|
|
+ current_data=$(date -d "${current_data} -1 day" +%Y%m%d)
|
|
|
done
|
|
|
|
|
|
last_index=$((${#date_keys[@]} - 1))
|
|
@@ -165,22 +166,22 @@ check_ad_hive() {
|
|
|
while true; do
|
|
|
local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
|
|
|
|
|
|
- elapsed=$(($(date +%s) - $step_start_time))
|
|
|
- if [ "$python_return_code" -eq 0 ]; then
|
|
|
+ elapsed=$(($(date +%s) - ${step_start_time}))
|
|
|
+ if [ "${python_return_code}" -eq 0 ]; then
|
|
|
break
|
|
|
fi
|
|
|
echo "Python程序返回非0值,等待五分钟后再次调用。"
|
|
|
sleep 300
|
|
|
local current_hour=$(date +%H)
|
|
|
local current_minute=$(date +%M)
|
|
|
- if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
+ if (( ${current_hour} > ${max_hour} || ( ${current_hour} == ${max_hour} && ${current_minute} >= ${max_minute} ) )); then
|
|
|
local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
|
|
|
- echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
|
|
|
- /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
|
|
|
+ echo -e "${LOG_PREFIX} -- 大数据数据生产校验 -- ${msg}: 耗时 ${elapsed}"
|
|
|
+ /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "${msg}" --start "${start_time}" --elapsed "${elapsed}"
|
|
|
exit 1
|
|
|
fi
|
|
|
done
|
|
|
- echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
|
|
|
+ echo "${LOG_PREFIX} -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 ${elapsed}"
|
|
|
}
|
|
|
|
|
|
origin_data() {
|
|
@@ -220,7 +221,7 @@ xgb_train() {
|
|
|
eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
|
|
|
|
|
|
local return_code=$?
|
|
|
- check_run_status $return_code $step_start_time "XGB模型训练任务" "XGB模型训练失败"
|
|
|
+ check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败"
|
|
|
}
|
|
|
|
|
|
calc_model_predict() {
|
|
@@ -259,14 +260,14 @@ calc_model_predict() {
|
|
|
done < "${predict_analyse_file_path}"
|
|
|
|
|
|
local return_code=$?
|
|
|
- check_run_status $return_code $step_start_time "计算Top10差异" "计算Top10差异异常"
|
|
|
+ check_run_status ${return_code} ${step_start_time} "计算Top10差异" "计算Top10差异异常"
|
|
|
|
|
|
old_incr_rate_avg=$( echo "scale=6; ${old_total_diff} / ${count}" | bc -l )
|
|
|
- check_run_status $? $step_start_time "计算老模型Top10差异" "计算老模型Top10差异异常"
|
|
|
+ check_run_status $? ${step_start_time} "计算老模型Top10差异" "计算老模型Top10差异异常"
|
|
|
|
|
|
|
|
|
new_incr_rate_avg=$( echo "scale=6; ${new_total_diff} / ${count}" | bc -l )
|
|
|
- check_run_status $? $step_start_time "计算新模型Top10差异" "计算新模型Top10差异异常"
|
|
|
+ check_run_status $? ${step_start_time} "计算新模型Top10差异" "计算新模型Top10差异异常"
|
|
|
|
|
|
echo "老模型Top10差异平均值: ${old_incr_rate_avg}"
|
|
|
echo "新模型Top10差异平均值: ${new_incr_rate_avg}"
|
|
@@ -298,17 +299,17 @@ model_predict() {
|
|
|
modelPath:${online_model_path}
|
|
|
|
|
|
local return_code=$?
|
|
|
- check_run_status $return_code $step_start_time "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败"
|
|
|
+ check_run_status ${return_code} ${step_start_time} "线上模型评估${predict_date_path: -8}的数据" "线上模型评估${predict_date_path: -8}的数据失败"
|
|
|
|
|
|
|
|
|
local python_return_code=$(python ${sh_path}/model_predict_analyse.py -op ${online_model_predict_result_path} -np ${new_model_predict_result_path} -af ${predict_analyse_file_path} -cf ${calibration_file_path})
|
|
|
- check_run_status $python_return_code $step_start_time "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败"
|
|
|
+ check_run_status ${python_return_code} ${step_start_time} "分析线上模型评估${predict_date_path: -8}的数据" "分析线上模型评估${predict_date_path: -8}的数据失败"
|
|
|
|
|
|
calc_model_predict
|
|
|
|
|
|
if (( $(echo "${new_incr_rate_avg} > 0.100000" | bc -l ) ));then
|
|
|
echo "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
|
|
|
- check_run_status 1 $step_start_time "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
|
|
|
+ check_run_status 1 ${step_start_time} "${predict_date_path: -8}的数据,绝对误差大于0.1" "线上模型评估${predict_date_path: -8}的数据,绝对误差大于0.1,请检查"
|
|
|
exit 1
|
|
|
fi
|
|
|
|
|
@@ -317,7 +318,7 @@ model_predict() {
|
|
|
score_diff=$( echo "${new_incr_rate_avg} - ${old_incr_rate_avg}" | bc -l )
|
|
|
if (( $(echo "${score_diff} > 0.050000" | bc -l ) ));then
|
|
|
echo "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05, 请检查"
|
|
|
- check_run_status 1 $step_start_time "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05"
|
|
|
+ check_run_status 1 ${step_start_time} "两个模型评估${predict_date_path: -8}的数据" "两个模型评估${predict_date_path: -8}的数据,两个模型分数差异为: ${score_diff}, 大于0.05"
|
|
|
exit 1
|
|
|
fi
|
|
|
|
|
@@ -332,7 +333,7 @@ model_upload_oss() {
|
|
|
${HADOOP} fs -get ${model_save_path} ${model_name}
|
|
|
if [ ! -d ${model_name} ]; then
|
|
|
echo "从HDFS下载模型失败"
|
|
|
- check_run_status 1 $step_start_time "HDFS下载模型任务" "HDFS下载模型失败"
|
|
|
+ check_run_status 1 ${step_start_time} "HDFS下载模型任务" "HDFS下载模型失败"
|
|
|
exit 1
|
|
|
fi
|
|
|
|
|
@@ -346,7 +347,7 @@ model_upload_oss() {
|
|
|
|
|
|
${HADOOP} fs -put ${model_name}.tar.gz ${OSS_CALIBRATION_FILE_NAME}.txt ${MODEL_OSS_PATH}
|
|
|
local return_code=$?
|
|
|
- check_run_status $return_code $step_start_time "模型上传OSS任务" "模型上传OSS失败"
|
|
|
+ check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
|
|
|
|
|
|
echo ${model_save_path} > ${model_path_file}
|
|
|
|
|
@@ -357,11 +358,11 @@ model_upload_oss() {
|
|
|
)
|
|
|
|
|
|
local return_code=$?
|
|
|
- check_run_status $return_code $step_start_time "模型上传OSS任务" "模型上传OSS失败"
|
|
|
+ check_run_status ${return_code} ${step_start_time} "模型上传OSS任务" "模型上传OSS失败"
|
|
|
|
|
|
local step_end_time=$(date +%s)
|
|
|
- local elapsed=$(($step_end_time - $start_time))
|
|
|
- echo -e "$LOG_PREFIX -- 模型更新完成 -- 模型更新成功: 耗时 $elapsed"
|
|
|
+ local elapsed=$((${step_end_time} - ${start_time}))
|
|
|
+ echo -e "${LOG_PREFIX} -- 模型更新完成 -- 模型更新成功: 耗时 ${elapsed}"
|
|
|
|
|
|
send_success_upload_msg
|
|
|
}
|