|  | @@ -0,0 +1,137 @@
 | 
	
		
			
				|  |  | +package com.aliyun.odps.spark.examples.makedata_ad
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import com.alibaba.fastjson.JSON
 | 
	
		
			
				|  |  | +import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils}
 | 
	
		
			
				|  |  | +import examples.extractor.ExtractorUtils
 | 
	
		
			
				|  |  | +import org.apache.hadoop.io.compress.GzipCodec
 | 
	
		
			
				|  |  | +import org.apache.spark.sql.SparkSession
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import scala.collection.JavaConversions._
 | 
	
		
			
				|  |  | +import scala.collection.mutable.ArrayBuffer
 | 
	
		
			
				|  |  | +import scala.io.Source
 | 
	
		
			
				|  |  | +/*
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +object makedata_ad_33_bucketData_20240726 {
 | 
	
		
			
				|  |  | +  def main(args: Array[String]): Unit = {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val spark = SparkSession
 | 
	
		
			
				|  |  | +      .builder()
 | 
	
		
			
				|  |  | +      .appName(this.getClass.getName)
 | 
	
		
			
				|  |  | +      .getOrCreate()
 | 
	
		
			
				|  |  | +    val sc = spark.sparkContext
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val loader = getClass.getClassLoader
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val resourceUrlBucket = loader.getResource("20240718_ad_bucket_688.txt")
 | 
	
		
			
				|  |  | +    val buckets =
 | 
	
		
			
				|  |  | +      if (resourceUrlBucket != null) {
 | 
	
		
			
				|  |  | +        val buckets = Source.fromURL(resourceUrlBucket).getLines().mkString("\n")
 | 
	
		
			
				|  |  | +        Source.fromURL(resourceUrlBucket).close()
 | 
	
		
			
				|  |  | +        buckets
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        ""
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    println(buckets)
 | 
	
		
			
				|  |  | +    val bucketsMap = buckets.split("\n")
 | 
	
		
			
				|  |  | +      .map(r => r.replace(" ", "").replaceAll("\n", ""))
 | 
	
		
			
				|  |  | +      .filter(r => r.nonEmpty)
 | 
	
		
			
				|  |  | +      .map(r =>{
 | 
	
		
			
				|  |  | +        val rList = r.split("\t")
 | 
	
		
			
				|  |  | +        (rList(0), (rList(1).toDouble, rList(2).split(",").map(_.toDouble)))
 | 
	
		
			
				|  |  | +      }).toMap
 | 
	
		
			
				|  |  | +    val bucketsMap_br = sc.broadcast(bucketsMap)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // 1 读取参数
 | 
	
		
			
				|  |  | +    val param = ParamUtils.parseArgs(args)
 | 
	
		
			
				|  |  | +    val readPath = param.getOrElse("readPath", "/dw/recommend/model/31_ad_sample_data/")
 | 
	
		
			
				|  |  | +    val savePath = param.getOrElse("savePath", "/dw/recommend/model/33_ad_train_data/")
 | 
	
		
			
				|  |  | +    val beginStr = param.getOrElse("beginStr", "20240620")
 | 
	
		
			
				|  |  | +    val endStr = param.getOrElse("endStr", "20240620")
 | 
	
		
			
				|  |  | +    val repartition = param.getOrElse("repartition", "100").toInt
 | 
	
		
			
				|  |  | +    val filterNames = param.getOrElse("filterNames", "").split(",").toSet
 | 
	
		
			
				|  |  | +    val whatLabel = param.getOrElse("whatLabel", "ad_is_conversion")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val dateRange = MyDateUtils.getDateRange(beginStr, endStr)
 | 
	
		
			
				|  |  | +    for (date <- dateRange) {
 | 
	
		
			
				|  |  | +      println("开始执行:" + date)
 | 
	
		
			
				|  |  | +      val data = sc.textFile(readPath + "/" + date + "*").map(r=>{
 | 
	
		
			
				|  |  | +        val rList = r.split("\t")
 | 
	
		
			
				|  |  | +        val logKey = rList(0)
 | 
	
		
			
				|  |  | +        val labelKey = rList(1)
 | 
	
		
			
				|  |  | +        val jsons = JSON.parseObject(rList(2))
 | 
	
		
			
				|  |  | +        val features = scala.collection.mutable.Map[String, Double]()
 | 
	
		
			
				|  |  | +        jsons.foreach(r => {
 | 
	
		
			
				|  |  | +          features.put(r._1, jsons.getDoubleValue(r._1))
 | 
	
		
			
				|  |  | +        })
 | 
	
		
			
				|  |  | +        (logKey, labelKey, features)
 | 
	
		
			
				|  |  | +      })
 | 
	
		
			
				|  |  | +        .filter{
 | 
	
		
			
				|  |  | +          case (logKey, labelKey, features) =>
 | 
	
		
			
				|  |  | +            val logKeyList = logKey.split(",")
 | 
	
		
			
				|  |  | +            val apptype = logKeyList(0)
 | 
	
		
			
				|  |  | +            !Set("12", "13").contains(apptype)
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        .map{
 | 
	
		
			
				|  |  | +          case (logKey, labelKey, features) =>
 | 
	
		
			
				|  |  | +            val label = JSON.parseObject(labelKey).getOrDefault(whatLabel, "0").toString
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            bucketsMap.foreach {
 | 
	
		
			
				|  |  | +              case (name, scorer) => {
 | 
	
		
			
				|  |  | +                if (!features.contains(name)){
 | 
	
		
			
				|  |  | +                  features.put(name, 1E-9);
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +            (label, features)
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        .mapPartitions(row => {
 | 
	
		
			
				|  |  | +          val result = new ArrayBuffer[String]()
 | 
	
		
			
				|  |  | +          val bucketsMap = bucketsMap_br.value
 | 
	
		
			
				|  |  | +          row.foreach{
 | 
	
		
			
				|  |  | +            case (label, features) =>
 | 
	
		
			
				|  |  | +              val featuresBucket = features.map{
 | 
	
		
			
				|  |  | +                case (name, score) =>
 | 
	
		
			
				|  |  | +                  var ifFilter = false
 | 
	
		
			
				|  |  | +                  if (filterNames.nonEmpty){
 | 
	
		
			
				|  |  | +                    filterNames.foreach(r=> if (!ifFilter && name.contains(r)) {ifFilter = true} )
 | 
	
		
			
				|  |  | +                  }
 | 
	
		
			
				|  |  | +                  if (ifFilter){
 | 
	
		
			
				|  |  | +                    ""
 | 
	
		
			
				|  |  | +                  }else{
 | 
	
		
			
				|  |  | +                    if (score > 1E-8) {
 | 
	
		
			
				|  |  | +                      if (bucketsMap.contains(name)) {
 | 
	
		
			
				|  |  | +                        val (bucketsNum, buckets) = bucketsMap(name)
 | 
	
		
			
				|  |  | +                        val scoreNew = 0.01+1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0)
 | 
	
		
			
				|  |  | +                        name + ":" + scoreNew.toString
 | 
	
		
			
				|  |  | +                      } else {
 | 
	
		
			
				|  |  | +                        name + ":" + score.toString
 | 
	
		
			
				|  |  | +                      }
 | 
	
		
			
				|  |  | +                    } else {
 | 
	
		
			
				|  |  | +                      name + ":" + "0.01"
 | 
	
		
			
				|  |  | +                    }
 | 
	
		
			
				|  |  | +                  }
 | 
	
		
			
				|  |  | +              }.filter(_.nonEmpty)
 | 
	
		
			
				|  |  | +              result.add(label + "\t" + featuresBucket.mkString("\t"))
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          result.iterator
 | 
	
		
			
				|  |  | +      })
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // 4 保存数据到hdfs
 | 
	
		
			
				|  |  | +      val hdfsPath = savePath + "/" + date
 | 
	
		
			
				|  |  | +      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
 | 
	
		
			
				|  |  | +        println("删除路径并开始数据写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +        MyHdfsUtils.delete_hdfs_path(hdfsPath)
 | 
	
		
			
				|  |  | +        data.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        println("路径不合法,无法写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 |