| 
					
				 | 
			
			
				@@ -0,0 +1,549 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+package com.aliyun.odps.spark.examples.makedata_ad.xgb 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.alibaba.fastjson.{JSON, JSONObject} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.TableSchema 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.data.Record 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils, env} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import examples.extractor.{ExtractorUtils, RankExtractorFeature_20240530} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import examples.utils.DateTimeUtil 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.hadoop.io.compress.GzipCodec 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.spark.sql.SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.xm.Similarity 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.JavaConversions._ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.mutable.ArrayBuffer 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.io.Source 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+object makedata_31_bucketDataPrint_20240821 { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  def main(args: Array[String]): Unit = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 1 读取参数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val param = ParamUtils.parseArgs(args) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val tablePart = param.getOrElse("tablePart", "64").toInt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val beginStr = param.getOrElse("beginStr", "2024061500") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val endStr = param.getOrElse("endStr", "2024061523") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/33_for_check") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val project = param.getOrElse("project", "loghubods") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val table = param.getOrElse("table", "alg_recsys_ad_sample_all") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val repartition = param.getOrElse("repartition", "32").toInt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val readDate = param.getOrElse("readDate", "20240615") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureNameFile = param.getOrElse("featureName", "20240718_ad_feature_name_517.txt") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureBucketFile = param.getOrElse("featureBucketFile", "20240718_ad_bucket_517.txt"); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val filterHours = param.getOrElse("filterHours", "00,01,02,03,04,05,06,07").split(",").toSet 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val idDefaultValue = param.getOrElse("idDefaultValue", "1.0").toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val spark = SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .builder() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .appName(this.getClass.getName) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .getOrCreate() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val sc = spark.sparkContext 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val loader = getClass.getClassLoader 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureNameUrl = loader.getResource(featureNameFile) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val content = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (featureNameUrl != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val content = Source.fromURL(featureNameUrl).getLines().mkString("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Source.fromURL(featureNameUrl).close() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        "" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    println(content) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureNameList = content.split("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .map(r => r.replace(" ", "").replaceAll("\n", "")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .filter(r => r.nonEmpty).toList 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val contentList_br = sc.broadcast(featureNameList) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val resourceUrlBucket = loader.getResource(featureBucketFile) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val buckets = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (resourceUrlBucket != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val buckets = Source.fromURL(resourceUrlBucket).getLines().mkString("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Source.fromURL(resourceUrlBucket).close() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        buckets 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        "" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    println(buckets) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val bucketsMap = buckets.split("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .map(r => r.replace(" ", "").replaceAll("\n", "")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .filter(r => r.nonEmpty) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .map(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val rList = r.split("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        (rList(0), (rList(1).toDouble, rList(2).split(",").map(_.toDouble))) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }).toMap 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val bucketsMap_br = sc.broadcast(bucketsMap) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 2 读取odps+表信息 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val odpsOps = env.getODPS(sc) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 3 循环执行数据生产 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val timeRange = MyDateUtils.getDateHourRange(beginStr, endStr) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for (dt_hh <- timeRange) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val dt = dt_hh.substring(0, 8) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val hh = dt_hh.substring(8, 10) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val partition = s"dt=$dt,hh=$hh" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (filterHours.nonEmpty && filterHours.contains(hh)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("不执行partiton:" + partition) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("开始执行partiton:" + partition) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val odpsData = odpsOps.readTable(project = project, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            table = table, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            partition = partition, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            transfer = func, 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            numPartition = tablePart) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          .map(record => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val ts = record.getString("ts").toInt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val cid = record.getString("cid") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val apptype = record.getString("apptype") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val extend: JSONObject = if (record.isNull("extend")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("extend")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val featureMap = new JSONObject() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b1: JSONObject = if (record.isNull("b1_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b1_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b2: JSONObject = if (record.isNull("b2_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b2_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b3: JSONObject = if (record.isNull("b3_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b3_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b4: JSONObject = if (record.isNull("b4_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b4_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b5: JSONObject = if (record.isNull("b5_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b5_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b6: JSONObject = if (record.isNull("b6_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b6_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b7: JSONObject = if (record.isNull("b7_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b7_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b8: JSONObject = if (record.isNull("b8_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b8_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val b9: JSONObject = if (record.isNull("b9_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("b9_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("cid_" + cid, idDefaultValue) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (b1.containsKey("adid") && b1.getString("adid").nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("adid_" + b1.getString("adid"), idDefaultValue) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (b1.containsKey("adverid") && b1.getString("adverid").nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("adverid_" + b1.getString("adverid"), idDefaultValue) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (b1.containsKey("targeting_conversion") && b1.getString("targeting_conversion").nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("targeting_conversion_" + b1.getString("targeting_conversion"), idDefaultValue) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val hour = DateTimeUtil.getHourByTimestamp(ts) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("hour_" + hour, idDefaultValue) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val dayOfWeek = DateTimeUtil.getDayOrWeekByTimestamp(ts) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("dayofweek_" + dayOfWeek, idDefaultValue); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("apptype_" + apptype, idDefaultValue); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (extend.containsKey("abcode") && extend.getString("abcode").nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("abcode_" + extend.getString("abcode"), idDefaultValue) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (b1.containsKey("cpa")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("cpa", b1.getString("cpa").toDouble) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (b1.containsKey("weight") && b1.getString("weight").nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("weight", b1.getString("weight").toDouble) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for ((bn, prefix1) <- List( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              (b2, "b2"), (b3, "b3"), (b4, "b4"), (b5, "b5"), (b8, "b8"), (b9, "b9") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            )) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              for (prefix2 <- List( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "1h", "2h", "3h", "4h", "5h", "6h", "12h", "1d", "3d", "7d", "today", "yesterday" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              )) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f1 = RankExtractorFeature_20240530.calDiv(click, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f2 = RankExtractorFeature_20240530.calDiv(conver, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f3 = RankExtractorFeature_20240530.calDiv(conver, click) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f4 = conver 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "click", click) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*log(view)", conver * RankExtractorFeature_20240530.calLog(view)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*ctcvr", conver * f2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for ((bn, prefix1) <- List( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              (b6, "b6"), (b7, "b7") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            )) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              for (prefix2 <- List( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "7d", "14d" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              )) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f1 = RankExtractorFeature_20240530.calDiv(click, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f2 = RankExtractorFeature_20240530.calDiv(conver, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f3 = RankExtractorFeature_20240530.calDiv(conver, click) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f4 = conver 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "click", click) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*log(view)", conver * RankExtractorFeature_20240530.calLog(view)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*ctcvr", conver * f2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val c1: JSONObject = if (record.isNull("c1_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("c1_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val midActionList = if (c1.containsKey("action") && c1.getString("action").nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              c1.getString("action").split(",").map(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val rList = r.split(":") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                (rList(0), (rList(1).toInt, rList(2).toInt, rList(3).toInt, rList(4).toInt, rList(5))) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              }).sortBy(-_._2._1).toList 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              new ArrayBuffer[(String, (Int, Int, Int, Int, String))]().toList 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // u特征 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val viewAll = midActionList.size.toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val clickAll = midActionList.map(_._2._2).sum.toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val converAll = midActionList.map(_._2._3).sum.toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val incomeAll = midActionList.map(_._2._4).sum.toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("viewAll", viewAll) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("clickAll", clickAll) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("converAll", converAll) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("incomeAll", incomeAll) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("ctr_all", RankExtractorFeature_20240530.calDiv(clickAll, viewAll)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("ctcvr_all", RankExtractorFeature_20240530.calDiv(converAll, viewAll)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("cvr_all", RankExtractorFeature_20240530.calDiv(clickAll, converAll)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            featureMap.put("ecpm_all", RankExtractorFeature_20240530.calDiv(incomeAll * 1000, viewAll)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // ui特征 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val midTimeDiff = scala.collection.mutable.Map[String, Double]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            midActionList.foreach { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              case (cid, (ts_history, click, conver, income, title)) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (!midTimeDiff.contains("timediff_view_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  midTimeDiff.put("timediff_view_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (!midTimeDiff.contains("timediff_click_" + cid) && click > 0) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  midTimeDiff.put("timediff_click_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (!midTimeDiff.contains("timediff_conver_" + cid) && conver > 0) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  midTimeDiff.put("timediff_conver_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val midActionStatic = scala.collection.mutable.Map[String, Double]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            midActionList.foreach { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              case (cid, (ts_history, click, conver, income, title)) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.put("actionstatic_view_" + cid, 1.0 + midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.put("actionstatic_click_" + cid, click + midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.put("actionstatic_conver_" + cid, conver + midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.put("actionstatic_income_" + cid, income + midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midTimeDiff.contains("timediff_view_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("timediff_view", midTimeDiff.getOrDefault("timediff_view_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midTimeDiff.contains("timediff_click_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("timediff_click", midTimeDiff.getOrDefault("timediff_click_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midTimeDiff.contains("timediff_conver_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("timediff_conver", midTimeDiff.getOrDefault("timediff_conver_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midActionStatic.contains("actionstatic_view_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("actionstatic_view", midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midActionStatic.contains("actionstatic_click_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("actionstatic_click", midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midActionStatic.contains("actionstatic_conver_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("actionstatic_conver", midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midActionStatic.contains("actionstatic_income_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("actionstatic_income", midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("actionstatic_ctr", RankExtractorFeature_20240530.calDiv( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              )) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("actionstatic_conver_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("actionstatic_ctcvr", RankExtractorFeature_20240530.calDiv( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              )) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (midActionStatic.contains("actionstatic_conver_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("actionstatic_cvr", RankExtractorFeature_20240530.calDiv( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0), 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              )) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val e1: JSONObject = if (record.isNull("e1_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("e1_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val e2: JSONObject = if (record.isNull("e2_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("e2_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val title = b1.getOrDefault("cidtitle", "").toString 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (title.nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              for ((en, prefix1) <- List((e1, "e1"), (e2, "e2"))) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                for (prefix2 <- List("tags_3d", "tags_7d", "tags_14d")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  if (en.nonEmpty && en.containsKey(prefix2) && en.getString(prefix2).nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    val (f1, f2, f3, f4) = funcC34567ForTags(en.getString(prefix2), title) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    featureMap.put(prefix1 + "_" + prefix2 + "_matchnum", f1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    featureMap.put(prefix1 + "_" + prefix2 + "_maxscore", f3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    featureMap.put(prefix1 + "_" + prefix2 + "_avgscore", f4) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val d1: JSONObject = if (record.isNull("d1_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("d1_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val d2: JSONObject = if (record.isNull("d2_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("d2_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val d3: JSONObject = if (record.isNull("d3_feature")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("d3_feature")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (d1.nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              for (prefix <- List("3h", "6h", "12h", "1d", "3d", "7d")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val view = if (!d1.containsKey("ad_view_" + prefix)) 0D else d1.getIntValue("ad_view_" + prefix).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val click = if (!d1.containsKey("ad_click_" + prefix)) 0D else d1.getIntValue("ad_click_" + prefix).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val conver = if (!d1.containsKey("ad_conversion_" + prefix)) 0D else d1.getIntValue("ad_conversion_" + prefix).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val income = if (!d1.containsKey("ad_income_" + prefix)) 0D else d1.getIntValue("ad_income_" + prefix).toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f1 = RankExtractorFeature_20240530.calDiv(click, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f2 = RankExtractorFeature_20240530.calDiv(conver, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f3 = RankExtractorFeature_20240530.calDiv(conver, click) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f4 = conver 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put("d1_feature" + "_" + prefix + "_" + "ctr", f1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put("d1_feature" + "_" + prefix + "_" + "ctcvr", f2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put("d1_feature" + "_" + prefix + "_" + "cvr", f3) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put("d1_feature" + "_" + prefix + "_" + "conver", f4) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureMap.put("d1_feature" + "_" + prefix + "_" + "ecpm", f5) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val vidRankMaps = scala.collection.mutable.Map[String, scala.collection.immutable.Map[String, Double]]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (d2.nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              d2.foreach(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val key = r._1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val value = d2.getString(key).split(",").map(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  val rList = r.split(":") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  (rList(0), rList(2).toDouble) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                }).toMap 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                vidRankMaps.put(key, value) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (prefix1 <- List("ctr", "ctcvr", "ecpm")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              for (prefix2 <- List("1d", "3d", "7d", "14d")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                if (vidRankMaps.contains(prefix1 + "_" + prefix2)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  val rank = vidRankMaps(prefix1 + "_" + prefix2).getOrDefault(cid, 0.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  if (rank >= 1.0) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    featureMap.put("vid_rank_" + prefix1 + "_" + prefix2, 1.0 / rank) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (d3.nonEmpty) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              val vTitle = d3.getString("title") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              val score = Similarity.conceptSimilarity(title, vTitle) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              featureMap.put("ctitle_vtitle_similarity", score); 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            /* 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            广告 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              sparse:cid adid adverid targeting_conversion 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              cpa --> 1个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              adverid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr conver ecpm  --> 30个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              地理//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              app//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              手机品牌//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              系统 无数据 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              week//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              hour//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            用户 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              用户历史 点击/转化 的title tag;3d 7d 14d; cid的title; 数量/最高分/平均分 --> 18个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              用户历史 14d 看过/点过/转化次数/income; ctr cvr ctcvr ecpm;  --> 8个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              用户到cid的ui特征 --> 10个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                1/用户最近看过这个cid的时间间隔 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                1/用户最近点过这个cid的时间间隔 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                1/用户最近转过这个cid的时间间隔 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                用户看过这个cid多少次 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                用户点过这个cid多少次 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                用户转过这个cid多少次 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                用户对这个cid花了多少钱 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                用户对这个cid的ctr ctcvr cvr 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            视频 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              title与cid的 sim-score-1/-2 无数据 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              vid//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              vid//cid下的 1d 3d 7d 14d、 ctr ctcvr ecpm 的rank值 倒数 --> 12个 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+             */ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            //4 处理label信息。 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val labels = new JSONObject 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            for (labelKey <- List("ad_is_click", "ad_is_conversion")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              if (!record.isNull(labelKey)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                labels.put(labelKey, record.getString(labelKey)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            //5 处理log key表头。 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val mid = record.getString("mid") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val allfeature = if (record.isNull("allfeaturemap")) new JSONObject() else 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              JSON.parseObject(record.getString("allfeaturemap")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val headvideoid = record.getString("headvideoid") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // val logKey = (apptype, mid, cid, ts, headvideoid).productIterator.mkString(",") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val labelKey = labels.toString() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val label = record.getString("ad_is_conversion") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            //6 拼接数据,保存。 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          }).filter { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            case (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              !(allfeature.isEmpty || allfeature.containsKey("weight_sum") || allfeature.contains("weight")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          }.mapPartitions(row => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val result = new ArrayBuffer[String]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val bucketsMap = bucketsMap_br.value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            row.foreach { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              case (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val offlineFeatureMap = featureMap.map(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  val score = r._2.toString.toDouble 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  val name = r._1 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  if (score > 1E-8) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    if (bucketsMap.contains(name)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                      val (bucketsNum, buckets) = bucketsMap(name) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                      val scoreNew = 1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                      name + ":" + scoreNew.toString 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                      name + ":" + score.toString 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                    "" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                }).filter(_.nonEmpty) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                result.add( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                  (apptype, mid, cid, ts, headvideoid, label, allfeature.toString(), offlineFeatureMap.iterator.mkString(",")).productIterator.mkString("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            result.iterator 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        // 4 保存数据到hdfs 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val savePartition = dt + hh 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val hdfsPath = savePath + "/" + savePartition 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          println("删除路径并开始数据写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          MyHdfsUtils.delete_hdfs_path(hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          odpsData.coalesce(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          println("路径不合法,无法写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val data2 = sc.textFile(savePath + "/" + readDate + "*").mapPartitions(row => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val result = new ArrayBuffer[(String, List[String], List[String])]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      // 680实验,517个特征 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      row.foreach(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val rList = r.split("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val label = rList(5).toString 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val allFeatureMap = JSON.parseObject(rList(6)).toMap.map(r => (r._1, r._2.toString)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val offlineFeature = rList(7).split(",").map(r => (r.split(":")(0), r.split(":")(1))).toMap 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val offlineFeatureList = allFeatureMap.map { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (key, value) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            key + ":" + value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }.filter(_.nonEmpty).toList 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val b8FeatureSet = Set("b8_3h_ctr", "b8_3h_ctcvr", "b8_3h_cvr", "b8_3h_conver", "b8_3h_ecpm", "b8_3h_click", "b8_3h_conver*log(view)", "b8_3h_conver*ctcvr", "b8_6h_ctr", "b8_6h_ctcvr", "b8_6h_cvr", "b8_6h_conver", "b8_6h_ecpm", "b8_6h_click", "b8_6h_conver*log(view)", "b8_6h_conver*ctcvr", "b8_12h_ctr", "b8_12h_ctcvr", "b8_12h_cvr", "b8_12h_conver", "b8_12h_ecpm", "b8_12h_click", "b8_12h_conver*log(view)", "b8_12h_conver*ctcvr", "b8_1d_ctr", "b8_1d_ctcvr", "b8_1d_cvr", "b8_1d_conver", "b8_1d_ecpm", "b8_1d_click", "b8_1d_conver*log(view)", "b8_1d_conver*ctcvr", "b8_3d_ctr", "b8_3d_ctcvr", "b8_3d_cvr", "b8_3d_conver", "b8_3d_ecpm", "b8_3d_click", "b8_3d_conver*log(view)", "b8_3d_conver*ctcvr", "b8_7d_ctr", "b8_7d_ctcvr", "b8_7d_cvr", "b8_7d_conver", "b8_7d_ecpm", "b8_7d_click", "b8_7d_conver*log(view)", "b8_7d_conver*ctcvr") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val b8AllFeatureMap = new JSONObject() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (elem <- allFeatureMap) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          b8AllFeatureMap.put(elem._1, elem._2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        for (elem <- b8FeatureSet) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          if (!b8AllFeatureMap.containsKey(elem) && offlineFeature.contains(elem)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            b8AllFeatureMap.put(elem, offlineFeature(elem)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val b8AllFeature = b8AllFeatureMap.map { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (key, value) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            key + ":" + value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }.filter(_.nonEmpty).toList 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        result.add((label, offlineFeatureList, b8AllFeature)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      result.iterator 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val offlineSave = "/dw/recommend/model/33_for_check_all/" + readDate 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if (offlineSave.nonEmpty && offlineSave.startsWith("/dw/recommend/model/")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("删除路径并开始数据写入:" + offlineSave) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      MyHdfsUtils.delete_hdfs_path(offlineSave) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      data2.map(r => r._1 + "\t" + r._2.mkString("\t")).saveAsTextFile(offlineSave, classOf[GzipCodec]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("路径不合法,无法写入:" + offlineSave) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val allFeatureV1 = "/dw/recommend/model/33_for_check_all_b8/" + readDate 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    if (allFeatureV1.nonEmpty && allFeatureV1.startsWith("/dw/recommend/model/")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("删除路径并开始数据写入:" + allFeatureV1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      MyHdfsUtils.delete_hdfs_path(allFeatureV1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      data2.map(r => r._1 + "\t" + r._3.mkString("\t")).saveAsTextFile(allFeatureV1, classOf[GzipCodec]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("路径不合法,无法写入:" + allFeatureV1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  def func(record: Record, schema: TableSchema): Record = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    record 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  def funcC34567ForTags(tags: String, title: String): Tuple4[Double, String, Double, Double] = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 匹配数量 匹配词 语义最高相似度分 语义平均相似度分 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val tagsList = tags.split(",") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    var d1 = 0.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val d2 = new ArrayBuffer[String]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    var d3 = 0.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    var d4 = 0.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for (tag <- tagsList) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (title.contains(tag)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        d1 = d1 + 1.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        d2.add(tag) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val score = Similarity.conceptSimilarity(tag, title) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      d3 = if (score > d3) score else d3 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      d4 = d4 + score 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    d4 = if (tagsList.nonEmpty) d4 / tagsList.size else d4 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    (d1, d2.mkString(","), d3, d4) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 |