jch преди 1 седмица
родител
ревизия
aabd376a8b

+ 127 - 0
src/main/scala/com/aliyun/odps/spark/examples/makedata_recsys_r_rate/makedata_recsys_86_fm_sample_20250627.scala

@@ -0,0 +1,127 @@
+package com.aliyun.odps.spark.examples.makedata_recsys_r_rate
+
+import com.aliyun.odps.spark.examples.myUtils.{DataUtils, MyDateUtils, MyHdfsUtils, ParamUtils}
+import org.apache.hadoop.io.compress.GzipCodec
+import org.apache.spark.sql.SparkSession
+
+import scala.collection.JavaConversions._
+import scala.collection.mutable.ArrayBuffer
+import scala.io.Source
+import scala.util.Random
+
+object makedata_recsys_86_fm_sample_20250627 {
+  def main(args: Array[String]): Unit = {
+    // 1. 读取参数
+    val param = ParamUtils.parseArgs(args)
+    val readPath = param.getOrElse("readPath", "/dw/recommend/model/83_origin_data/")
+    val beginStr = param.getOrElse("beginStr", "20250317")
+    val endStr = param.getOrElse("endStr", "20250317")
+    val whatApps = param.getOrElse("whatApps", "0,4,5,21,3,6").split(",").toSet
+    val whatPages = param.getOrElse("whatPages", "详情后沉浸页,回流后沉浸页&内页feed,首页feed,详情页").split(",").toSet
+    val whatLabel = param.getOrElse("whatLabel", "is_return_n_noself")
+    val fuSampleRate = param.getOrElse("fuSampleRate", "-1.0").toDouble
+    val notUseBucket = param.getOrElse("notUseBucket", "0").toInt
+    val featureNameFile = param.getOrElse("featureName", "20250317_recsys_rov_name.txt")
+    val featureBucketFile = param.getOrElse("featureBucket", "20241209_recsys_nor_bucket.txt")
+    val repartition = param.getOrElse("repartition", "100").toInt
+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/83_recsys_rov_train_data/")
+
+    val spark = SparkSession
+      .builder()
+      .appName(this.getClass.getName)
+      .getOrCreate()
+    val sc = spark.sparkContext
+
+    // 2. 加载特征
+    val loader = getClass.getClassLoader
+    val featureNameSet = loadFeatureNames(featureNameFile)
+    val featureBucketMap = DataUtils.loadUseFeatureBuckets(loader, notUseBucket, featureBucketFile)
+    val bucketsMap_br = sc.broadcast(featureBucketMap)
+
+    // 3. 处理数据
+    val dateRange = MyDateUtils.getDateRange(beginStr, endStr)
+    for (date <- dateRange) {
+      println("开始执行:" + date)
+      val data = sc.textFile(readPath + "/" + date + "*").map(r => {
+          val rList = r.split("\t")
+          val logKey = rList(0)
+          val labelKey = rList(1)
+          val scoresMap = rList(2)
+          val featData = rList(3)
+          (logKey, labelKey, scoresMap, featData)
+        })
+        .filter {
+          case (logKey, labelKey, scoresMap, featData) =>
+            validData(logKey, whatApps, whatPages)
+        }.filter {
+          case (logKey, labelKey, scoresMap, featData) =>
+            val label = DataUtils.parseLabel(labelKey, whatLabel).toDouble
+            label > 0 || new Random().nextDouble() <= fuSampleRate
+        }
+        .map {
+          case (logKey, labelKey, scoresMap, featData) =>
+            val label = DataUtils.parseLabel(labelKey, whatLabel).toDouble
+            val features = DataUtils.parseFeature(featData)
+            (logKey, label, scoresMap, features)
+        }
+        .mapPartitions(row => {
+          val result = new ArrayBuffer[String]()
+          val bucketsMap = bucketsMap_br.value
+          row.foreach {
+            case (logKey, label, scoresMap, features) =>
+              val featuresBucket = DataUtils.bucketFeature(featureNameSet, bucketsMap, features)
+              result.add(label + "\t" + featuresBucket.mkString("\t"))
+          }
+          result.iterator
+        })
+
+      // 4. 保存数据到hdfs
+      val hdfsPath = savePath + "/" + date
+      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
+        println("删除路径并开始数据写入:" + hdfsPath)
+        MyHdfsUtils.delete_hdfs_path(hdfsPath)
+        data.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
+      } else {
+        println("路径不合法,无法写入:" + hdfsPath)
+      }
+    }
+  }
+
+  private def recommendFlow(flowPool: String): Boolean = {
+    if (flowPool.isEmpty || flowPool.endsWith("#1")) {
+      return true
+    }
+    false
+  }
+
+  private def validData(logKey: String, whatApps: Set[String], whatPages: Set[String]): Boolean = {
+    // apptype, page, pagesource, recommendpagetype, flowpool, abcode, mid, vid, level, ts
+    val cells = logKey.split(",")
+    val apptype = cells(0)
+    val page = cells(1)
+    //val pagesource = cells(2)
+    val recommendpagetype = cells(3)
+    val flowpool = cells(4)
+    if (whatApps.contains(apptype)) {
+      if (recommendFlow(flowpool)) {
+        if (whatPages.contains(page)) {
+          return true
+        }
+      }
+    }
+    false
+  }
+
+  def loadFeatureNames(nameFile: String): Set[String] = {
+    val buffer = Source.fromFile(nameFile)
+    val names = buffer.getLines().mkString("\n")
+    buffer.close()
+    val featSet = names.split("\n")
+      .map(r => r.replace(" ", "").replaceAll("\n", ""))
+      .filter(r => r.nonEmpty)
+      .toSet
+    println("featSet.size=" + featSet.size)
+    println(featSet)
+    featSet
+  }
+}

+ 125 - 0
src/main/scala/com/aliyun/odps/spark/examples/makedata_recsys_r_rate/makedata_recsys_86_nor_sample_20250627.scala

@@ -0,0 +1,125 @@
+package com.aliyun.odps.spark.examples.makedata_recsys_r_rate
+
+import com.aliyun.odps.spark.examples.myUtils.{DataUtils, MyDateUtils, MyHdfsUtils, ParamUtils}
+import org.apache.hadoop.io.compress.GzipCodec
+import org.apache.spark.sql.SparkSession
+
+import scala.collection.JavaConversions._
+import scala.collection.mutable.ArrayBuffer
+import scala.io.Source
+import scala.util.Random
+
+object makedata_recsys_86_nor_sample_20250627 {
+  def main(args: Array[String]): Unit = {
+    // 1. 读取参数
+    val param = ParamUtils.parseArgs(args)
+    val readPath = param.getOrElse("readPath", "/dw/recommend/model/83_origin_data/")
+    val beginStr = param.getOrElse("beginStr", "20250221")
+    val endStr = param.getOrElse("endStr", "20250221")
+    val whatApps = param.getOrElse("whatApps", "0,4,5,21,3,6").split(",").toSet
+    val whatPages = param.getOrElse("whatPages", "详情后沉浸页,回流后沉浸页&内页feed,首页feed,详情页").split(",").toSet
+    val whatLabel = param.getOrElse("whatLabel", "return_n_uv_noself")
+    val fuSampleRate = param.getOrElse("fuSampleRate", "-1.0").toDouble
+    val notUseBucket = param.getOrElse("notUseBucket", "0").toInt
+    val featureNameFile = param.getOrElse("featureName", "20241209_recsys_nor_name.txt")
+    val featureBucketFile = param.getOrElse("featureBucket", "20241209_recsys_nor_bucket.txt")
+    val repartition = param.getOrElse("repartition", "100").toInt
+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/83_recsys_nor_train_data/")
+
+    val spark = SparkSession
+      .builder()
+      .appName(this.getClass.getName)
+      .getOrCreate()
+    val sc = spark.sparkContext
+
+    val loader = getClass.getClassLoader
+    val featureNameSet = loadFeatureNames(featureNameFile)
+    val featureBucketMap = DataUtils.loadUseFeatureBuckets(loader, notUseBucket, featureBucketFile)
+    val bucketsMap_br = sc.broadcast(featureBucketMap)
+
+    val dateRange = MyDateUtils.getDateRange(beginStr, endStr)
+    for (date <- dateRange) {
+      println("开始执行:" + date)
+      val data = sc.textFile(readPath + "/" + date + "*").map(r => {
+          val rList = r.split("\t")
+          val logKey = rList(0)
+          val labelKey = rList(1)
+          val scoresMap = rList(2)
+          val featData = rList(3)
+          (logKey, labelKey, scoresMap, featData)
+        })
+        .filter {
+          case (logKey, labelKey, scoresMap, featData) =>
+            validData(logKey, whatApps, whatPages)
+        }.filter {
+          case (logKey, labelKey, scoresMap, featData) =>
+            val label = DataUtils.parseLabel(labelKey, whatLabel).toDouble
+            label > 0 || new Random().nextDouble() <= fuSampleRate
+        }
+        .map {
+          case (logKey, labelKey, scoresMap, featData) =>
+            val label = DataUtils.parseLabel(labelKey, whatLabel).toDouble
+            val features = DataUtils.parseFeature(featData)
+            (logKey, label, scoresMap, features)
+        }
+        .mapPartitions(row => {
+          val result = new ArrayBuffer[String]()
+          val bucketsMap = bucketsMap_br.value
+          row.foreach {
+            case (logKey, label, scoresMap, features) =>
+              val featuresBucket = DataUtils.bucketFeature(featureNameSet, bucketsMap, features)
+              result.add(logKey + "\t" + label + "\t" + scoresMap + "\t" + featuresBucket.mkString("\t"))
+          }
+          result.iterator
+        })
+
+      // 4. 保存数据到hdfs
+      val hdfsPath = savePath + "/" + date
+      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
+        println("删除路径并开始数据写入:" + hdfsPath)
+        MyHdfsUtils.delete_hdfs_path(hdfsPath)
+        data.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
+      } else {
+        println("路径不合法,无法写入:" + hdfsPath)
+      }
+    }
+  }
+
+  private def recommendFlow(flowPool: String): Boolean = {
+    if (flowPool.isEmpty || flowPool.endsWith("#1")) {
+      return true
+    }
+    false
+  }
+
+  private def validData(logKey: String, whatApps: Set[String], whatPages: Set[String]): Boolean = {
+    // apptype, page, pagesource, recommendpagetype, flowpool, abcode, mid, vid, level, ts
+    val cells = logKey.split(",")
+    val apptype = cells(0)
+    val page = cells(1)
+    //val pagesource = cells(2)
+    val recommendpagetype = cells(3)
+    val flowpool = cells(4)
+    if (whatApps.contains(apptype)) {
+      if (recommendFlow(flowpool)) {
+        if (whatPages.contains(page)) {
+          return true
+        }
+      }
+    }
+    false
+  }
+
+  def loadFeatureNames(nameFile: String): Set[String] = {
+    val buffer = Source.fromFile(nameFile)
+    val names = buffer.getLines().mkString("\n")
+    buffer.close()
+    val featSet = names.split("\n")
+      .map(r => r.replace(" ", "").replaceAll("\n", ""))
+      .filter(r => r.nonEmpty)
+      .toSet
+    println("featSet.size=" + featSet.size)
+    println(featSet)
+    featSet
+  }
+}