Browse Source

feat:修改自动更新脚本

zhaohaipeng 7 months ago
parent
commit
a0b9b40fb1
1 changed files with 123 additions and 6 deletions
  1. 123 6
      ad/01_ad_model_update.sh

+ 123 - 6
ad/01_ad_model_update.sh

@@ -1,7 +1,7 @@
 #!/bin/sh
 #!/bin/sh
 set -x
 set -x
 
 
-# source /root/anaconda3/bin/activate py37
+source /root/anaconda3/bin/activate py37
 sh_path=$(dirname $0)
 sh_path=$(dirname $0)
 source ${sh_path}/00_common.sh
 source ${sh_path}/00_common.sh
 
 
@@ -15,22 +15,57 @@ HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
 
 
 TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4/
 TRAIN_PATH=/dw/recommend/model/31_ad_sample_data_v4/
 BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4/
 BUCKET_FEATURE_PATH=/dw/recommend/model/33_ad_train_data_v4/
+MODEL_PATH=/dw/recommend/model/35_ad_model_test/
+PREDICT_RESULT_SAVE_PATH=/dw/recommend/model/34_ad_predict_data_test/
 TABLE=alg_recsys_ad_sample_all
 TABLE=alg_recsys_ad_sample_all
 
 
+MODEL_OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
+
+today_early_1="$(date -d '1 days ago' +%Y%m%d)"
+
+feature_file=20240703_ad_feature_name.txt
+# 线上模型名
+model_name=model_xgb_351_1000_v2_test
 # 训练用的数据路径
 # 训练用的数据路径
 train_data_path=""
 train_data_path=""
-
 # 评估用的数据路径
 # 评估用的数据路径
 predict_date_path=""
 predict_date_path=""
+#评估结果保存路径
+predict_result_path=""
+# 模型保存路径
+model_save_path=""
+# 模型本地临时保存路径
+model_local_path=/root/zhaohp/XGB
+# 任务开始时间
+start_time=$(date +%s)
+
+# 校验命令的退出码
+check_run_status() {
+    local status=$1
+    local step_start_time=$2
+    local step_name=$3
+
+    local step_end_time=$(date +%s)
+    local step_elapsed=$(($step_end_time - $step_start_time))
+
+    if [ $status -ne 0 ]; then
+        echo "$LOG_PREFIX -- ${step_name}失败: 耗时 $step_elapsed"
+        local elapsed=$(($step_end_time - $start_time))
+        # /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
+        exit 1
+    else
+        echo "$LOG_PREFIX -- ${step_name}成功: 耗时 $step_elapsed"
+    fi
+}
 
 
 init() {
 init() {
 
 
-  local today_early_1="$(date -d '1 days ago' +%Y%m%d)"
 
 
   predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
   predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
+  model_save_path=${MODEL_PATH}/${model_name}_$(date -d +%Y%m%d)
+  predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_351_1000
 
 
   local count=1
   local count=1
-
   local current_data="$(date -d '2 days ago' +%Y%m%d)"
   local current_data="$(date -d '2 days ago' +%Y%m%d)"
   # 循环获取前 n 天的非节日日期
   # 循环获取前 n 天的非节日日期
   while [[ $count -lt 8 ]]; do
   while [[ $count -lt 8 ]]; do
@@ -49,18 +84,100 @@ init() {
     current_data=$(date -d "$current_data -1 day" +%Y%m%d)
     current_data=$(date -d "$current_data -1 day" +%Y%m%d)
   done
   done
 
 
+
   echo "train_data_path: ${train_data_path}"
   echo "train_data_path: ${train_data_path}"
   echo "predict_date_path: ${predict_date_path}"
   echo "predict_date_path: ${predict_date_path}"
+  echo "predict_result_path: ${predict_result_path}"
+  echo "model_save_path: ${model_save_path}"
+  echo "feature_file: ${feature_file}"
+  echo "model_name: ${model_name}"
+  echo "model_local_path: ${model_local_path}"
+  echo "model_oss_path: ${MODEL_OSS_PATH}"
+}
+
+# 校验大数据任务是否执行完成
+check_ad_hive() {
+    local step_start_time=$(date +%s)
+    local max_hour=05
+    local max_minute=30
+    local elapsed=0
+    while true; do
+        local python_return_code=$(python ${sh_path}/ad_utils.py --excute_program check_ad_origin_hive --partition ${today_early_1} --hh 23)
+
+        elapsed=$(($(date +%s) - $step_start_time))
+        if [ "$python_return_code" -eq 0 ]; then
+            break
+        fi
+        echo "Python程序返回非0值,等待五分钟后再次调用。"
+        sleep 300
+        local current_hour=$(date +%H)
+        local current_minute=$(date +%M)
+        if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
+            local msg="大数据数据生产校验失败, 分区: ${today_early_1}"
+            echo -e "$LOG_PREFIX -- 大数据数据生产校验 -- ${msg}: 耗时 $elapsed"
+            /root/anaconda3/bin/python ${sh_path}/ad_monitor_util.py --level error --msg "$msg" --start "$start_time" --elapsed "$elapsed"
+            exit 1
+        fi
+    done
+    echo "$LOG_PREFIX -- 大数据数据生产校验 -- 大数据数据生产校验通过: 耗时 $elapsed"
+
+}
+
+xgb_train() {
+  local step_start_time=$(date +%s)
+  /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit  \
+  --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20240808  \
+  --master yarn --driver-memory 6G --executor-memory 9G --executor-cores 1 --num-executors 31  \
+  --conf spark.yarn.executor.memoryoverhead=1000  \
+  --conf spark.shuffle.service.enabled=true  \
+  --conf spark.shuffle.service.port=7337  \
+  --conf spark.shuffle.consolidateFiles=true  \
+  --conf spark.shuffle.manager=sort  \
+  --conf spark.storage.memoryFraction=0.4  \
+  --conf spark.shuffle.memoryFraction=0.5  \
+  --conf spark.default.parallelism=200  \
+  /root/zhangbo/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar  \
+  featureFile:20240703_ad_feature_name.txt  \
+  trainPath:${train_data_path}  \
+  testPath:${predict_date_path}  \
+  savePath:${predict_result_path}  \
+  modelPath:${model_save_path}  \
+  eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:30 repartition:20
+
+  local return_code=$?
+  check_run_status $return_code $step_start_time "XGB模型训练任务"
 }
 }
 
 
-# xgb_train() {
+model_upload_oss() {
+  cd ${model_local_path}
+  $hadoop fs -get ${model_save_path} ./${model_name}
+
+  if [ ! -d ./${model_name} ]; then
+    echo "从HDFS下载模型失败"
+    check_run_status 1 $step_start_time "XGB模型训练任务" 
+    exit 1 
+  fi
+
+  tar -czvf ${model_name}.tar.gz -C ${model_name} .
 
 
-# }
+  rm -rf .${model_name}.tar.gz.crc
 
 
+  $hadoop fs -rm -r -skipTrash ${MODEL_OSS_PATH}/${model_name}.tar.gz
+  
+  $hadoop fs -put ${model_name}.tar.gz ${MODEL_OSS_PATH}
+  check_run_status $return_code $step_start_time "模型上传OSS"
+
+}
 
 
 # 主方法
 # 主方法
 main() {
 main() {
   init
   init
+
+  check_ad_hive
+
+  xgb_train
+
+  model_upload_oss
 }
 }