|
@@ -1,275 +0,0 @@
|
|
-package com.aliyun.odps.spark.examples.makedata_recsys_r_rate
|
|
|
|
-
|
|
|
|
-import com.alibaba.fastjson.{JSON, JSONObject}
|
|
|
|
-import com.aliyun.odps.TableSchema
|
|
|
|
-import com.aliyun.odps.data.Record
|
|
|
|
-import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils, env}
|
|
|
|
-import examples.extractor.RankExtractorFeature_20240530
|
|
|
|
-import org.apache.hadoop.io.compress.GzipCodec
|
|
|
|
-import org.apache.spark.sql.SparkSession
|
|
|
|
-import org.xm.Similarity
|
|
|
|
-import examples.utils.SimilarityUtils
|
|
|
|
-import scala.collection.JavaConversions._
|
|
|
|
-import scala.collection.mutable.ArrayBuffer
|
|
|
|
-/*
|
|
|
|
-
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-object makedata_recsys_61_originData_20241209 {
|
|
|
|
- def main(args: Array[String]): Unit = {
|
|
|
|
- val spark = SparkSession
|
|
|
|
- .builder()
|
|
|
|
- .appName(this.getClass.getName)
|
|
|
|
- .getOrCreate()
|
|
|
|
- val sc = spark.sparkContext
|
|
|
|
-
|
|
|
|
- // 1 读取参数
|
|
|
|
- val param = ParamUtils.parseArgs(args)
|
|
|
|
-
|
|
|
|
- val beginStr = param.getOrElse("beginStr", "2024120912")
|
|
|
|
- val endStr = param.getOrElse("endStr", "2024120912")
|
|
|
|
- val project = param.getOrElse("project", "loghubods")
|
|
|
|
- val table = param.getOrElse("table", "alg_recsys_sample_all_v2")
|
|
|
|
- val tablePart = param.getOrElse("tablePart", "64").toInt
|
|
|
|
- val savePath = param.getOrElse("savePath", "/dw/recommend/model/61_origin_data/")
|
|
|
|
- val repartition = param.getOrElse("repartition", "32").toInt
|
|
|
|
-
|
|
|
|
- // 2 odps
|
|
|
|
- val odpsOps = env.getODPS(sc)
|
|
|
|
-
|
|
|
|
- // 3 循环执行数据生产
|
|
|
|
- val timeRange = MyDateUtils.getDateHourRange(beginStr, endStr)
|
|
|
|
- for (dt_hh <- timeRange) {
|
|
|
|
- val dt = dt_hh.substring(0, 8)
|
|
|
|
- val hh = dt_hh.substring(8, 10)
|
|
|
|
- val partition = s"dt=$dt,hh=$hh"
|
|
|
|
- println("开始执行partiton:" + partition)
|
|
|
|
- val odpsData = odpsOps.readTable(project = project,
|
|
|
|
- table = table,
|
|
|
|
- partition = partition,
|
|
|
|
- transfer = func,
|
|
|
|
- numPartition = tablePart)
|
|
|
|
- .map(record => {
|
|
|
|
- val featureMap = new JSONObject()
|
|
|
|
- // a 视频特征
|
|
|
|
- val b1: JSONObject = if (record.isNull("b1_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b1_feature"))
|
|
|
|
- val b2: JSONObject = if (record.isNull("b2_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b2_feature"))
|
|
|
|
- val b3: JSONObject = if (record.isNull("b3_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b3_feature"))
|
|
|
|
- val b6: JSONObject = if (record.isNull("b6_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b6_feature"))
|
|
|
|
- val b7: JSONObject = if (record.isNull("b7_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b7_feature"))
|
|
|
|
-
|
|
|
|
- val b8: JSONObject = if (record.isNull("b8_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b8_feature"))
|
|
|
|
- val b9: JSONObject = if (record.isNull("b9_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b9_feature"))
|
|
|
|
- val b10: JSONObject = if (record.isNull("b10_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b10_feature"))
|
|
|
|
- val b11: JSONObject = if (record.isNull("b11_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b11_feature"))
|
|
|
|
- val b12: JSONObject = if (record.isNull("b12_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b12_feature"))
|
|
|
|
- val b13: JSONObject = if (record.isNull("b13_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b13_feature"))
|
|
|
|
- val b17: JSONObject = if (record.isNull("b17_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b17_feature"))
|
|
|
|
- val b18: JSONObject = if (record.isNull("b18_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b18_feature"))
|
|
|
|
- val b19: JSONObject = if (record.isNull("b19_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("b19_feature"))
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- val origin_data = List(
|
|
|
|
- (b1, b2, b3, "b123"), (b1, b6, b7, "b167"),
|
|
|
|
- (b8, b9, b10, "b8910"), (b11, b12, b13, "b111213"),
|
|
|
|
- (b17, b18, b19, "b171819")
|
|
|
|
- )
|
|
|
|
- for ((b_1, b_2, b_3, prefix1) <- origin_data) {
|
|
|
|
- for (prefix2 <- List(
|
|
|
|
- "1h", "2h", "3h", "4h", "12h", "1d", "3d", "7d"
|
|
|
|
- )) {
|
|
|
|
- val exp = if (b_1.isEmpty) 0D else b_1.getIntValue("exp_pv_" + prefix2).toDouble
|
|
|
|
- val share = if (b_2.isEmpty) 0D else b_2.getIntValue("share_pv_" + prefix2).toDouble
|
|
|
|
- val returns = if (b_3.isEmpty) 0D else b_3.getIntValue("return_uv_" + prefix2).toDouble
|
|
|
|
- val f1 = RankExtractorFeature_20240530.calDiv(share, exp)
|
|
|
|
- val f2 = RankExtractorFeature_20240530.calLog(share)
|
|
|
|
- val f3 = RankExtractorFeature_20240530.calDiv(returns, exp)
|
|
|
|
- val f4 = RankExtractorFeature_20240530.calLog(returns)
|
|
|
|
- val f5 = f3 * f4
|
|
|
|
- val f6 = RankExtractorFeature_20240530.calDiv(returns, share)
|
|
|
|
- featureMap.put(prefix1 + "_" + prefix2 + "_" + "STR", f1)
|
|
|
|
- featureMap.put(prefix1 + "_" + prefix2 + "_" + "log(share)", f2)
|
|
|
|
- featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROV", f3)
|
|
|
|
- featureMap.put(prefix1 + "_" + prefix2 + "_" + "log(return)", f4)
|
|
|
|
- featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROV*log(return)", f5)
|
|
|
|
- featureMap.put(prefix1 + "_" + prefix2 + "_" + "ROS", f6)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- val video_info: JSONObject = if (record.isNull("t_v_info_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("t_v_info_feature"))
|
|
|
|
- featureMap.put("total_time", if (video_info.containsKey("total_time")) video_info.getIntValue("total_time").toDouble else 0D)
|
|
|
|
- featureMap.put("bit_rate", if (video_info.containsKey("bit_rate")) video_info.getIntValue("bit_rate").toDouble else 0D)
|
|
|
|
-
|
|
|
|
- val c1: JSONObject = if (record.isNull("c1_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("c1_feature"))
|
|
|
|
- if (c1.nonEmpty) {
|
|
|
|
- featureMap.put("playcnt_6h", if (c1.containsKey("playcnt_6h")) c1.getIntValue("playcnt_6h").toDouble else 0D)
|
|
|
|
- featureMap.put("playcnt_1d", if (c1.containsKey("playcnt_1d")) c1.getIntValue("playcnt_1d").toDouble else 0D)
|
|
|
|
- featureMap.put("playcnt_3d", if (c1.containsKey("playcnt_3d")) c1.getIntValue("playcnt_3d").toDouble else 0D)
|
|
|
|
- featureMap.put("playcnt_7d", if (c1.containsKey("playcnt_7d")) c1.getIntValue("playcnt_7d").toDouble else 0D)
|
|
|
|
- }
|
|
|
|
- val c2: JSONObject = if (record.isNull("c2_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("c2_feature"))
|
|
|
|
- if (c2.nonEmpty) {
|
|
|
|
- featureMap.put("share_pv_12h", if (c2.containsKey("share_pv_12h")) c2.getIntValue("share_pv_12h").toDouble else 0D)
|
|
|
|
- featureMap.put("share_pv_1d", if (c2.containsKey("share_pv_1d")) c2.getIntValue("share_pv_1d").toDouble else 0D)
|
|
|
|
- featureMap.put("share_pv_3d", if (c2.containsKey("share_pv_3d")) c2.getIntValue("share_pv_3d").toDouble else 0D)
|
|
|
|
- featureMap.put("share_pv_7d", if (c2.containsKey("share_pv_7d")) c2.getIntValue("share_pv_7d").toDouble else 0D)
|
|
|
|
- featureMap.put("return_uv_12h", if (c2.containsKey("return_uv_12h")) c2.getIntValue("return_uv_12h").toDouble else 0D)
|
|
|
|
- featureMap.put("return_uv_1d", if (c2.containsKey("return_uv_1d")) c2.getIntValue("return_uv_1d").toDouble else 0D)
|
|
|
|
- featureMap.put("return_uv_3d", if (c2.containsKey("return_uv_3d")) c2.getIntValue("return_uv_3d").toDouble else 0D)
|
|
|
|
- featureMap.put("return_uv_7d", if (c2.containsKey("return_uv_7d")) c2.getIntValue("return_uv_7d").toDouble else 0D)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- val title = if (video_info.containsKey("title")) video_info.getString("title") else ""
|
|
|
|
- if (!title.equals("")) {
|
|
|
|
- for (key_feature <- List("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")) {
|
|
|
|
- val c34567: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString(key_feature))
|
|
|
|
- for (key_time <- List("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
|
- val tags = if (c34567.containsKey(key_time)) c34567.getString(key_time) else ""
|
|
|
|
- if (!tags.equals("")) {
|
|
|
|
- val (f1, f2, f3, f4) = funcC34567ForTagsW2V(tags, title)
|
|
|
|
- featureMap.put(key_feature + "_" + key_time + "_matchnum", f1)
|
|
|
|
- featureMap.put(key_feature + "_" + key_time + "_maxscore", f3)
|
|
|
|
- featureMap.put(key_feature + "_" + key_time + "_avgscore", f4)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- val vid = if (record.isNull("vid")) "" else record.getString("vid")
|
|
|
|
- if (!vid.equals("")) {
|
|
|
|
- for (key_feature <- List("c8_feature", "c9_feature")) {
|
|
|
|
- val c89: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString(key_feature))
|
|
|
|
- for (key_action <- List("share", "return")) {
|
|
|
|
- val cfListStr = if (c89.containsKey(key_action)) c89.getString(key_action) else ""
|
|
|
|
- if (!cfListStr.equals("")) {
|
|
|
|
- val cfMap = cfListStr.split(",").map(r => {
|
|
|
|
- val rList = r.split(":")
|
|
|
|
- (rList(0), (rList(1), rList(2), rList(3)))
|
|
|
|
- }).toMap
|
|
|
|
- if (cfMap.contains(vid)) {
|
|
|
|
- val (score, num, rank) = cfMap(vid)
|
|
|
|
- featureMap.put(key_feature + "_" + key_action + "_score", score.toDouble)
|
|
|
|
- featureMap.put(key_feature + "_" + key_action + "_num", num.toDouble)
|
|
|
|
- featureMap.put(key_feature + "_" + key_action + "_rank", 1.0 / rank.toDouble)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- val d1: JSONObject = if (record.isNull("d1_feature")) new JSONObject() else
|
|
|
|
- JSON.parseObject(record.getString("d1_feature"))
|
|
|
|
- if (d1.nonEmpty) {
|
|
|
|
- featureMap.put("d1_exp", if (d1.containsKey("exp")) d1.getString("exp").toDouble else 0D)
|
|
|
|
- featureMap.put("d1_return_n", if (d1.containsKey("return_n")) d1.getString("return_n").toDouble else 0D)
|
|
|
|
- featureMap.put("d1_rovn", if (d1.containsKey("rovn")) d1.getString("rovn").toDouble else 0D)
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- /*
|
|
|
|
- 视频特征: 5*6*5 = 240个
|
|
|
|
- 曝光使用pv 分享使用pv 回流使用uv --> 1h 2h 3h 4h 12h 1d 3d 7d
|
|
|
|
- STR log(share) ROV log(return) ROV*log(return) ROS
|
|
|
|
- 整体、整体曝光对应、推荐非冷启root、推荐冷启root、分省份root
|
|
|
|
- 视频基础: 2个 视频时长、比特率
|
|
|
|
- 用户: 4+8 = 12个
|
|
|
|
- 播放次数 --> 6h 1d 3d 7d --> 4个
|
|
|
|
- 带回来的分享pv 回流uv --> 12h 1d 3d 7d --> 8个
|
|
|
|
- 人+vid-title: 5*3*3 = 45
|
|
|
|
- 播放点/回流点/分享点/累积分享/累积回流 --> 1d 3d 7d --> 匹配数量 语义最高相似度分 语义平均相似度分 --> 45个
|
|
|
|
- 人+vid-cf: 2*3*3 = 12
|
|
|
|
- 基于分享行为/基于回流行为 --> “分享cf”+”回流点击cf“ 相似分 相似数量 相似rank的倒数 --> 12个
|
|
|
|
- 头部视频: 3
|
|
|
|
- 曝光 回流 ROVn 3个特征
|
|
|
|
- 场景:
|
|
|
|
- 小时 星期 apptype city province pagesource 机器型号
|
|
|
|
- 总量: 240+2+12+45+12+3 = 314
|
|
|
|
- ---------------------------------------------------------------
|
|
|
|
- 视频特征:
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- */
|
|
|
|
-
|
|
|
|
-
|
|
|
|
- //4 处理label信息。
|
|
|
|
- val labels = new JSONObject
|
|
|
|
- for (labelKey <- List(
|
|
|
|
- "is_play", "is_share", "is_return", "noself_is_return", "return_uv", "noself_return_uv", "total_return_uv",
|
|
|
|
- "share_pv", "total_share_uv"
|
|
|
|
- )) {
|
|
|
|
- if (!record.isNull(labelKey)) {
|
|
|
|
- labels.put(labelKey, record.getString(labelKey))
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- //5 处理log key表头。
|
|
|
|
- val apptype = record.getString("apptype")
|
|
|
|
- val pagesource = record.getString("pagesource")
|
|
|
|
- val mid = record.getString("mid")
|
|
|
|
- // vid 已经提取了
|
|
|
|
- val ts = record.getString("ts")
|
|
|
|
- val abcode = record.getString("abcode")
|
|
|
|
- val level = if (record.isNull("level")) "0" else record.getString("level")
|
|
|
|
- val logKey = (apptype, pagesource, mid, vid, ts, abcode, level).productIterator.mkString(",")
|
|
|
|
- val labelKey = labels.toString()
|
|
|
|
- val featureKey = featureMap.toString()
|
|
|
|
- //6 拼接数据,保存。
|
|
|
|
- logKey + "\t" + labelKey + "\t" + featureKey
|
|
|
|
-
|
|
|
|
- })
|
|
|
|
-
|
|
|
|
- // 4 保存数据到hdfs
|
|
|
|
- val savePartition = dt + hh
|
|
|
|
- val hdfsPath = savePath + "/" + savePartition
|
|
|
|
- if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
|
|
|
|
- println("删除路径并开始数据写入:" + hdfsPath)
|
|
|
|
- MyHdfsUtils.delete_hdfs_path(hdfsPath)
|
|
|
|
- odpsData.coalesce(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
|
|
|
|
- } else {
|
|
|
|
- println("路径不合法,无法写入:" + hdfsPath)
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- def func(record: Record, schema: TableSchema): Record = {
|
|
|
|
- record
|
|
|
|
- }
|
|
|
|
-
|
|
|
|
- def funcC34567ForTagsW2V(tags: String, title: String): Tuple4[Double, String, Double, Double] = {
|
|
|
|
- // 匹配数量 匹配词 语义最高相似度分 语义平均相似度分
|
|
|
|
- val tagsList = tags.split(",")
|
|
|
|
- var d1 = 0.0
|
|
|
|
- val d2 = new ArrayBuffer[String]()
|
|
|
|
- var d3 = 0.0
|
|
|
|
- var d4 = 0.0
|
|
|
|
- for (tag <- tagsList) {
|
|
|
|
- if (title.contains(tag)) {
|
|
|
|
- d1 = d1 + 1.0
|
|
|
|
- d2.add(tag)
|
|
|
|
- }
|
|
|
|
- val score = SimilarityUtils.word2VecSimilarity(tag, title)
|
|
|
|
- d3 = if (score > d3) score else d3
|
|
|
|
- d4 = d4 + score
|
|
|
|
- }
|
|
|
|
- d4 = if (tagsList.nonEmpty) d4 / tagsList.size else d4
|
|
|
|
- (d1, d2.mkString(","), d3, d4)
|
|
|
|
- }
|
|
|
|
-}
|
|
|