| 
					
				 | 
			
			
				@@ -0,0 +1,127 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+package com.aliyun.odps.spark.examples.makdir_qiao 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.alibaba.fastjson.JSON 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import examples.extractor.ExtractorUtils 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.hadoop.io.compress.GzipCodec 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.spark.sql.SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.JavaConversions._ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.mutable.ArrayBuffer 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.io.Source 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+/* 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ */ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+object makedata_16_bucketData_20240705 { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  def main(args: Array[String]): Unit = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val spark = SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .builder() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .appName(this.getClass.getName) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .getOrCreate() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val sc = spark.sparkContext 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val loader = getClass.getClassLoader 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val resourceUrl = loader.getResource("20240608_feature_name.txt") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val content = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (resourceUrl != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val content = Source.fromURL(resourceUrl).getLines().mkString("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Source.fromURL(resourceUrl).close() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        content 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        "" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    println(content) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val contentList = content.split("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .map(r=> r.replace(" ", "").replaceAll("\n", "")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .filter(r=> r.nonEmpty).toList 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val contentList_br = sc.broadcast(contentList) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val resourceUrlBucket = loader.getResource("20240609_bucket_274.txt") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val buckets = 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (resourceUrlBucket != null) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val buckets = Source.fromURL(resourceUrlBucket).getLines().mkString("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        Source.fromURL(resourceUrlBucket).close() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        buckets 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        "" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    println(buckets) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val bucketsMap = buckets.split("\n") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .map(r => r.replace(" ", "").replaceAll("\n", "")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .filter(r => r.nonEmpty) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .map(r =>{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val rList = r.split("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        (rList(0), (rList(1).toDouble, rList(2).split(",").map(_.toDouble))) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }).toMap 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val bucketsMap_br = sc.broadcast(bucketsMap) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 1 读取参数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val param = ParamUtils.parseArgs(args) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val readPath = param.getOrElse("readPath", "/dw/recommend/model/14_feature_data/") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/16_train_data/") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val beginStr = param.getOrElse("beginStr", "20240606") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val endStr = param.getOrElse("endStr", "20240607") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val repartition = param.getOrElse("repartition", "200").toInt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val dateRange = MyDateUtils.getDateRange(beginStr, endStr) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for (date <- dateRange) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("开始执行:" + date) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val data = sc.textFile(readPath + date).map(r=>{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val rList = r.split("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val logKey = rList(0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val labelKey = rList(1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val features = rList(2).split(",").map(_.toDouble) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        (logKey, labelKey, features) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .filter{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (logKey, labelKey, features) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val logKeyList = logKey.split(",") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val apptype = logKeyList(0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val pagesource = logKeyList(1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            Set("0", "4", "5", "21", "3", "6").contains(apptype) && pagesource.endsWith("recommend") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .map{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (logKey, labelKey, features) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val label = JSON.parseObject(labelKey).getOrDefault("is_return", "0").toString 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            (label, features) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        .mapPartitions(row => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val result = new ArrayBuffer[String]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val contentList = contentList_br.value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val bucketsMap = bucketsMap_br.value 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        row.foreach{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          case (label, features) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            val featuresBucket = contentList.indices.map(i =>{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              val featureName = contentList(i) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              val score = features(i) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              if (score > 1E-8){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val (bucketNum, buckets) = bucketsMap(featureName) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                val scoreNew = 1.0 / bucketNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                featureName + ":" + scoreNew.toString 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              }else{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+                "" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            }).filter(_.nonEmpty) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            result.add(label + "\t" + featuresBucket.mkString("\t")) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        result.iterator 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      // 4 保存数据到hdfs 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val hdfsPath = savePath + "/" + date 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("删除路径并开始数据写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        MyHdfsUtils.delete_hdfs_path(hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        data.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } else { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("路径不合法,无法写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 |