|  | @@ -71,403 +71,403 @@ object makedata_31_bucketDataPrint_20240821 {
 | 
	
		
			
				|  |  |          (rList(0), (rList(1).toDouble, rList(2).split(",").map(_.toDouble)))
 | 
	
		
			
				|  |  |        }).toMap
 | 
	
		
			
				|  |  |      val bucketsMap_br = sc.broadcast(bucketsMap)
 | 
	
		
			
				|  |  | -    // 2 读取odps+表信息
 | 
	
		
			
				|  |  | -    val odpsOps = env.getODPS(sc)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -    // 3 循环执行数据生产
 | 
	
		
			
				|  |  | -    val timeRange = MyDateUtils.getDateHourRange(beginStr, endStr)
 | 
	
		
			
				|  |  | -    for (dt_hh <- timeRange) {
 | 
	
		
			
				|  |  | -      val dt = dt_hh.substring(0, 8)
 | 
	
		
			
				|  |  | -      val hh = dt_hh.substring(8, 10)
 | 
	
		
			
				|  |  | -      val partition = s"dt=$dt,hh=$hh"
 | 
	
		
			
				|  |  | -      if (filterHours.nonEmpty && filterHours.contains(hh)) {
 | 
	
		
			
				|  |  | -        println("不执行partiton:" + partition)
 | 
	
		
			
				|  |  | -      } else {
 | 
	
		
			
				|  |  | -        println("开始执行partiton:" + partition)
 | 
	
		
			
				|  |  | -        val odpsData = odpsOps.readTable(project = project,
 | 
	
		
			
				|  |  | -            table = table,
 | 
	
		
			
				|  |  | -            partition = partition,
 | 
	
		
			
				|  |  | -            transfer = func,
 | 
	
		
			
				|  |  | -            numPartition = tablePart)
 | 
	
		
			
				|  |  | -          .map(record => {
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val ts = record.getString("ts").toInt
 | 
	
		
			
				|  |  | -            val cid = record.getString("cid")
 | 
	
		
			
				|  |  | -            val apptype = record.getString("apptype")
 | 
	
		
			
				|  |  | -            val extend: JSONObject = if (record.isNull("extend")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("extend"))
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val featureMap = new JSONObject()
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val b1: JSONObject = if (record.isNull("b1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b1_feature"))
 | 
	
		
			
				|  |  | -            val b2: JSONObject = if (record.isNull("b2_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b2_feature"))
 | 
	
		
			
				|  |  | -            val b3: JSONObject = if (record.isNull("b3_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b3_feature"))
 | 
	
		
			
				|  |  | -            val b4: JSONObject = if (record.isNull("b4_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b4_feature"))
 | 
	
		
			
				|  |  | -            val b5: JSONObject = if (record.isNull("b5_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b5_feature"))
 | 
	
		
			
				|  |  | -            val b6: JSONObject = if (record.isNull("b6_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b6_feature"))
 | 
	
		
			
				|  |  | -            val b7: JSONObject = if (record.isNull("b7_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b7_feature"))
 | 
	
		
			
				|  |  | -            val b8: JSONObject = if (record.isNull("b8_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b8_feature"))
 | 
	
		
			
				|  |  | -            val b9: JSONObject = if (record.isNull("b9_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("b9_feature"))
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            featureMap.put("cid_" + cid, idDefaultValue)
 | 
	
		
			
				|  |  | -            if (b1.containsKey("adid") && b1.getString("adid").nonEmpty) {
 | 
	
		
			
				|  |  | -              featureMap.put("adid_" + b1.getString("adid"), idDefaultValue)
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (b1.containsKey("adverid") && b1.getString("adverid").nonEmpty) {
 | 
	
		
			
				|  |  | -              featureMap.put("adverid_" + b1.getString("adverid"), idDefaultValue)
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (b1.containsKey("targeting_conversion") && b1.getString("targeting_conversion").nonEmpty) {
 | 
	
		
			
				|  |  | -              featureMap.put("targeting_conversion_" + b1.getString("targeting_conversion"), idDefaultValue)
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val hour = DateTimeUtil.getHourByTimestamp(ts)
 | 
	
		
			
				|  |  | -            featureMap.put("hour_" + hour, idDefaultValue)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val dayOfWeek = DateTimeUtil.getDayOrWeekByTimestamp(ts)
 | 
	
		
			
				|  |  | -            featureMap.put("dayofweek_" + dayOfWeek, idDefaultValue);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            featureMap.put("apptype_" + apptype, idDefaultValue);
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            if (extend.containsKey("abcode") && extend.getString("abcode").nonEmpty) {
 | 
	
		
			
				|  |  | -              featureMap.put("abcode_" + extend.getString("abcode"), idDefaultValue)
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            if (b1.containsKey("cpa")) {
 | 
	
		
			
				|  |  | -              featureMap.put("cpa", b1.getString("cpa").toDouble)
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (b1.containsKey("weight") && b1.getString("weight").nonEmpty) {
 | 
	
		
			
				|  |  | -              featureMap.put("weight", b1.getString("weight").toDouble)
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            for ((bn, prefix1) <- List(
 | 
	
		
			
				|  |  | -              (b2, "b2"), (b3, "b3"), (b4, "b4"), (b5, "b5"), (b8, "b8"), (b9, "b9")
 | 
	
		
			
				|  |  | -            )) {
 | 
	
		
			
				|  |  | -              for (prefix2 <- List(
 | 
	
		
			
				|  |  | -                "1h", "2h", "3h", "4h", "5h", "6h", "12h", "1d", "3d", "7d", "today", "yesterday"
 | 
	
		
			
				|  |  | -              )) {
 | 
	
		
			
				|  |  | -                val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
	
		
			
				|  |  | -                val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
	
		
			
				|  |  | -                val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
	
		
			
				|  |  | -                val f4 = conver
 | 
	
		
			
				|  |  | -                val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "click", click)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*log(view)", conver * RankExtractorFeature_20240530.calLog(view))
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*ctcvr", conver * f2)
 | 
	
		
			
				|  |  | -              }
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            for ((bn, prefix1) <- List(
 | 
	
		
			
				|  |  | -              (b6, "b6"), (b7, "b7")
 | 
	
		
			
				|  |  | -            )) {
 | 
	
		
			
				|  |  | -              for (prefix2 <- List(
 | 
	
		
			
				|  |  | -                "7d", "14d"
 | 
	
		
			
				|  |  | -              )) {
 | 
	
		
			
				|  |  | -                val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble
 | 
	
		
			
				|  |  | -                val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
	
		
			
				|  |  | -                val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
	
		
			
				|  |  | -                val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
	
		
			
				|  |  | -                val f4 = conver
 | 
	
		
			
				|  |  | -                val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "click", click)
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*log(view)", conver * RankExtractorFeature_20240530.calLog(view))
 | 
	
		
			
				|  |  | -                featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*ctcvr", conver * f2)
 | 
	
		
			
				|  |  | -              }
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val c1: JSONObject = if (record.isNull("c1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("c1_feature"))
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val midActionList = if (c1.containsKey("action") && c1.getString("action").nonEmpty) {
 | 
	
		
			
				|  |  | -              c1.getString("action").split(",").map(r => {
 | 
	
		
			
				|  |  | -                val rList = r.split(":")
 | 
	
		
			
				|  |  | -                (rList(0), (rList(1).toInt, rList(2).toInt, rList(3).toInt, rList(4).toInt, rList(5)))
 | 
	
		
			
				|  |  | -              }).sortBy(-_._2._1).toList
 | 
	
		
			
				|  |  | -            } else {
 | 
	
		
			
				|  |  | -              new ArrayBuffer[(String, (Int, Int, Int, Int, String))]().toList
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            // u特征
 | 
	
		
			
				|  |  | -            val viewAll = midActionList.size.toDouble
 | 
	
		
			
				|  |  | -            val clickAll = midActionList.map(_._2._2).sum.toDouble
 | 
	
		
			
				|  |  | -            val converAll = midActionList.map(_._2._3).sum.toDouble
 | 
	
		
			
				|  |  | -            val incomeAll = midActionList.map(_._2._4).sum.toDouble
 | 
	
		
			
				|  |  | -            featureMap.put("viewAll", viewAll)
 | 
	
		
			
				|  |  | -            featureMap.put("clickAll", clickAll)
 | 
	
		
			
				|  |  | -            featureMap.put("converAll", converAll)
 | 
	
		
			
				|  |  | -            featureMap.put("incomeAll", incomeAll)
 | 
	
		
			
				|  |  | -            featureMap.put("ctr_all", RankExtractorFeature_20240530.calDiv(clickAll, viewAll))
 | 
	
		
			
				|  |  | -            featureMap.put("ctcvr_all", RankExtractorFeature_20240530.calDiv(converAll, viewAll))
 | 
	
		
			
				|  |  | -            featureMap.put("cvr_all", RankExtractorFeature_20240530.calDiv(clickAll, converAll))
 | 
	
		
			
				|  |  | -            featureMap.put("ecpm_all", RankExtractorFeature_20240530.calDiv(incomeAll * 1000, viewAll))
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            // ui特征
 | 
	
		
			
				|  |  | -            val midTimeDiff = scala.collection.mutable.Map[String, Double]()
 | 
	
		
			
				|  |  | -            midActionList.foreach {
 | 
	
		
			
				|  |  | -              case (cid, (ts_history, click, conver, income, title)) =>
 | 
	
		
			
				|  |  | -                if (!midTimeDiff.contains("timediff_view_" + cid)) {
 | 
	
		
			
				|  |  | -                  midTimeDiff.put("timediff_view_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
	
		
			
				|  |  | -                }
 | 
	
		
			
				|  |  | -                if (!midTimeDiff.contains("timediff_click_" + cid) && click > 0) {
 | 
	
		
			
				|  |  | -                  midTimeDiff.put("timediff_click_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
	
		
			
				|  |  | -                }
 | 
	
		
			
				|  |  | -                if (!midTimeDiff.contains("timediff_conver_" + cid) && conver > 0) {
 | 
	
		
			
				|  |  | -                  midTimeDiff.put("timediff_conver_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
	
		
			
				|  |  | -                }
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val midActionStatic = scala.collection.mutable.Map[String, Double]()
 | 
	
		
			
				|  |  | -            midActionList.foreach {
 | 
	
		
			
				|  |  | -              case (cid, (ts_history, click, conver, income, title)) =>
 | 
	
		
			
				|  |  | -                midActionStatic.put("actionstatic_view_" + cid, 1.0 + midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0))
 | 
	
		
			
				|  |  | -                midActionStatic.put("actionstatic_click_" + cid, click + midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0))
 | 
	
		
			
				|  |  | -                midActionStatic.put("actionstatic_conver_" + cid, conver + midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0))
 | 
	
		
			
				|  |  | -                midActionStatic.put("actionstatic_income_" + cid, income + midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            if (midTimeDiff.contains("timediff_view_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("timediff_view", midTimeDiff.getOrDefault("timediff_view_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midTimeDiff.contains("timediff_click_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("timediff_click", midTimeDiff.getOrDefault("timediff_click_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midTimeDiff.contains("timediff_conver_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("timediff_conver", midTimeDiff.getOrDefault("timediff_conver_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midActionStatic.contains("actionstatic_view_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("actionstatic_view", midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("actionstatic_click", midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midActionStatic.contains("actionstatic_conver_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("actionstatic_conver", midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midActionStatic.contains("actionstatic_income_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("actionstatic_income", midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("actionstatic_ctr", RankExtractorFeature_20240530.calDiv(
 | 
	
		
			
				|  |  | -                midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0),
 | 
	
		
			
				|  |  | -                midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)
 | 
	
		
			
				|  |  | -              ))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("actionstatic_conver_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("actionstatic_ctcvr", RankExtractorFeature_20240530.calDiv(
 | 
	
		
			
				|  |  | -                midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0),
 | 
	
		
			
				|  |  | -                midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)
 | 
	
		
			
				|  |  | -              ))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            if (midActionStatic.contains("actionstatic_conver_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
	
		
			
				|  |  | -              featureMap.put("actionstatic_cvr", RankExtractorFeature_20240530.calDiv(
 | 
	
		
			
				|  |  | -                midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0),
 | 
	
		
			
				|  |  | -                midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0)
 | 
	
		
			
				|  |  | -              ))
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val e1: JSONObject = if (record.isNull("e1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("e1_feature"))
 | 
	
		
			
				|  |  | -            val e2: JSONObject = if (record.isNull("e2_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("e2_feature"))
 | 
	
		
			
				|  |  | -            val title = b1.getOrDefault("cidtitle", "").toString
 | 
	
		
			
				|  |  | -            if (title.nonEmpty) {
 | 
	
		
			
				|  |  | -              for ((en, prefix1) <- List((e1, "e1"), (e2, "e2"))) {
 | 
	
		
			
				|  |  | -                for (prefix2 <- List("tags_3d", "tags_7d", "tags_14d")) {
 | 
	
		
			
				|  |  | -                  if (en.nonEmpty && en.containsKey(prefix2) && en.getString(prefix2).nonEmpty) {
 | 
	
		
			
				|  |  | -                    val (f1, f2, f3, f4) = funcC34567ForTags(en.getString(prefix2), title)
 | 
	
		
			
				|  |  | -                    featureMap.put(prefix1 + "_" + prefix2 + "_matchnum", f1)
 | 
	
		
			
				|  |  | -                    featureMap.put(prefix1 + "_" + prefix2 + "_maxscore", f3)
 | 
	
		
			
				|  |  | -                    featureMap.put(prefix1 + "_" + prefix2 + "_avgscore", f4)
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -                  }
 | 
	
		
			
				|  |  | -                }
 | 
	
		
			
				|  |  | -              }
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val d1: JSONObject = if (record.isNull("d1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("d1_feature"))
 | 
	
		
			
				|  |  | -            val d2: JSONObject = if (record.isNull("d2_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("d2_feature"))
 | 
	
		
			
				|  |  | -            val d3: JSONObject = if (record.isNull("d3_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("d3_feature"))
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            if (d1.nonEmpty) {
 | 
	
		
			
				|  |  | -              for (prefix <- List("3h", "6h", "12h", "1d", "3d", "7d")) {
 | 
	
		
			
				|  |  | -                val view = if (!d1.containsKey("ad_view_" + prefix)) 0D else d1.getIntValue("ad_view_" + prefix).toDouble
 | 
	
		
			
				|  |  | -                val click = if (!d1.containsKey("ad_click_" + prefix)) 0D else d1.getIntValue("ad_click_" + prefix).toDouble
 | 
	
		
			
				|  |  | -                val conver = if (!d1.containsKey("ad_conversion_" + prefix)) 0D else d1.getIntValue("ad_conversion_" + prefix).toDouble
 | 
	
		
			
				|  |  | -                val income = if (!d1.containsKey("ad_income_" + prefix)) 0D else d1.getIntValue("ad_income_" + prefix).toDouble
 | 
	
		
			
				|  |  | -                val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
	
		
			
				|  |  | -                val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
	
		
			
				|  |  | -                val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
	
		
			
				|  |  | -                val f4 = conver
 | 
	
		
			
				|  |  | -                val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
	
		
			
				|  |  | -                featureMap.put("d1_feature" + "_" + prefix + "_" + "ctr", f1)
 | 
	
		
			
				|  |  | -                featureMap.put("d1_feature" + "_" + prefix + "_" + "ctcvr", f2)
 | 
	
		
			
				|  |  | -                featureMap.put("d1_feature" + "_" + prefix + "_" + "cvr", f3)
 | 
	
		
			
				|  |  | -                featureMap.put("d1_feature" + "_" + prefix + "_" + "conver", f4)
 | 
	
		
			
				|  |  | -                featureMap.put("d1_feature" + "_" + prefix + "_" + "ecpm", f5)
 | 
	
		
			
				|  |  | -              }
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val vidRankMaps = scala.collection.mutable.Map[String, scala.collection.immutable.Map[String, Double]]()
 | 
	
		
			
				|  |  | -            if (d2.nonEmpty) {
 | 
	
		
			
				|  |  | -              d2.foreach(r => {
 | 
	
		
			
				|  |  | -                val key = r._1
 | 
	
		
			
				|  |  | -                val value = d2.getString(key).split(",").map(r => {
 | 
	
		
			
				|  |  | -                  val rList = r.split(":")
 | 
	
		
			
				|  |  | -                  (rList(0), rList(2).toDouble)
 | 
	
		
			
				|  |  | -                }).toMap
 | 
	
		
			
				|  |  | -                vidRankMaps.put(key, value)
 | 
	
		
			
				|  |  | -              })
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            for (prefix1 <- List("ctr", "ctcvr", "ecpm")) {
 | 
	
		
			
				|  |  | -              for (prefix2 <- List("1d", "3d", "7d", "14d")) {
 | 
	
		
			
				|  |  | -                if (vidRankMaps.contains(prefix1 + "_" + prefix2)) {
 | 
	
		
			
				|  |  | -                  val rank = vidRankMaps(prefix1 + "_" + prefix2).getOrDefault(cid, 0.0)
 | 
	
		
			
				|  |  | -                  if (rank >= 1.0) {
 | 
	
		
			
				|  |  | -                    featureMap.put("vid_rank_" + prefix1 + "_" + prefix2, 1.0 / rank)
 | 
	
		
			
				|  |  | -                  }
 | 
	
		
			
				|  |  | -                }
 | 
	
		
			
				|  |  | -              }
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            if (d3.nonEmpty) {
 | 
	
		
			
				|  |  | -              val vTitle = d3.getString("title")
 | 
	
		
			
				|  |  | -              val score = Similarity.conceptSimilarity(title, vTitle)
 | 
	
		
			
				|  |  | -              featureMap.put("ctitle_vtitle_similarity", score);
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            /*
 | 
	
		
			
				|  |  | -            广告
 | 
	
		
			
				|  |  | -              sparse:cid adid adverid targeting_conversion
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -              cpa --> 1个
 | 
	
		
			
				|  |  | -              adverid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr conver ecpm  --> 30个
 | 
	
		
			
				|  |  | -              cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | -              地理//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | -              app//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | -              手机品牌//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | -              系统 无数据
 | 
	
		
			
				|  |  | -              week//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个
 | 
	
		
			
				|  |  | -              hour//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            用户
 | 
	
		
			
				|  |  | -              用户历史 点击/转化 的title tag;3d 7d 14d; cid的title; 数量/最高分/平均分 --> 18个
 | 
	
		
			
				|  |  | -              用户历史 14d 看过/点过/转化次数/income; ctr cvr ctcvr ecpm;  --> 8个
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -              用户到cid的ui特征 --> 10个
 | 
	
		
			
				|  |  | -                1/用户最近看过这个cid的时间间隔
 | 
	
		
			
				|  |  | -                1/用户最近点过这个cid的时间间隔
 | 
	
		
			
				|  |  | -                1/用户最近转过这个cid的时间间隔
 | 
	
		
			
				|  |  | -                用户看过这个cid多少次
 | 
	
		
			
				|  |  | -                用户点过这个cid多少次
 | 
	
		
			
				|  |  | -                用户转过这个cid多少次
 | 
	
		
			
				|  |  | -                用户对这个cid花了多少钱
 | 
	
		
			
				|  |  | -                用户对这个cid的ctr ctcvr cvr
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            视频
 | 
	
		
			
				|  |  | -              title与cid的 sim-score-1/-2 无数据
 | 
	
		
			
				|  |  | -              vid//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | -              vid//cid下的 1d 3d 7d 14d、 ctr ctcvr ecpm 的rank值 倒数 --> 12个
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -             */
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            //4 处理label信息。
 | 
	
		
			
				|  |  | -            val labels = new JSONObject
 | 
	
		
			
				|  |  | -            for (labelKey <- List("ad_is_click", "ad_is_conversion")) {
 | 
	
		
			
				|  |  | -              if (!record.isNull(labelKey)) {
 | 
	
		
			
				|  |  | -                labels.put(labelKey, record.getString(labelKey))
 | 
	
		
			
				|  |  | -              }
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            //5 处理log key表头。
 | 
	
		
			
				|  |  | -            val mid = record.getString("mid")
 | 
	
		
			
				|  |  | -            val allfeature = if (record.isNull("allfeaturemap")) new JSONObject() else
 | 
	
		
			
				|  |  | -              JSON.parseObject(record.getString("allfeaturemap"))
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -            val headvideoid = record.getString("headvideoid")
 | 
	
		
			
				|  |  | -            // val logKey = (apptype, mid, cid, ts, headvideoid).productIterator.mkString(",")
 | 
	
		
			
				|  |  | -            val labelKey = labels.toString()
 | 
	
		
			
				|  |  | -            val label = record.getString("ad_is_conversion")
 | 
	
		
			
				|  |  | -            //6 拼接数据,保存。
 | 
	
		
			
				|  |  | -            (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap)
 | 
	
		
			
				|  |  | -          }).filter {
 | 
	
		
			
				|  |  | -            case (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap) =>
 | 
	
		
			
				|  |  | -              !(allfeature.isEmpty || allfeature.containsKey("weight_sum") || allfeature.contains("weight"))
 | 
	
		
			
				|  |  | -          }.mapPartitions(row => {
 | 
	
		
			
				|  |  | -            val result = new ArrayBuffer[String]()
 | 
	
		
			
				|  |  | -            val bucketsMap = bucketsMap_br.value
 | 
	
		
			
				|  |  | -            row.foreach {
 | 
	
		
			
				|  |  | -              case (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap) =>
 | 
	
		
			
				|  |  | -                val offlineFeatureMap = featureMap.map(r => {
 | 
	
		
			
				|  |  | -                  val score = r._2.toString.toDouble
 | 
	
		
			
				|  |  | -                  val name = r._1
 | 
	
		
			
				|  |  | -                  if (score > 1E-8) {
 | 
	
		
			
				|  |  | -                    if (bucketsMap.contains(name)) {
 | 
	
		
			
				|  |  | -                      val (bucketsNum, buckets) = bucketsMap(name)
 | 
	
		
			
				|  |  | -                      val scoreNew = 1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0)
 | 
	
		
			
				|  |  | -                      name + ":" + scoreNew.toString
 | 
	
		
			
				|  |  | -                    } else {
 | 
	
		
			
				|  |  | -                      name + ":" + score.toString
 | 
	
		
			
				|  |  | -                    }
 | 
	
		
			
				|  |  | -                  } else {
 | 
	
		
			
				|  |  | -                    ""
 | 
	
		
			
				|  |  | -                  }
 | 
	
		
			
				|  |  | -                }).filter(_.nonEmpty)
 | 
	
		
			
				|  |  | -                result.add(
 | 
	
		
			
				|  |  | -                  (apptype, mid, cid, ts, headvideoid, label, allfeature.toString(), offlineFeatureMap.iterator.mkString(",")).productIterator.mkString("\t")
 | 
	
		
			
				|  |  | -                )
 | 
	
		
			
				|  |  | -            }
 | 
	
		
			
				|  |  | -            result.iterator
 | 
	
		
			
				|  |  | -          })
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -        // 4 保存数据到hdfs
 | 
	
		
			
				|  |  | -        val savePartition = dt + hh
 | 
	
		
			
				|  |  | -        val hdfsPath = savePath + "/" + savePartition
 | 
	
		
			
				|  |  | -        if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
 | 
	
		
			
				|  |  | -          println("删除路径并开始数据写入:" + hdfsPath)
 | 
	
		
			
				|  |  | -          MyHdfsUtils.delete_hdfs_path(hdfsPath)
 | 
	
		
			
				|  |  | -          odpsData.coalesce(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
 | 
	
		
			
				|  |  | -        } else {
 | 
	
		
			
				|  |  | -          println("路径不合法,无法写入:" + hdfsPath)
 | 
	
		
			
				|  |  | -        }
 | 
	
		
			
				|  |  | -      }
 | 
	
		
			
				|  |  | -    }
 | 
	
		
			
				|  |  | +    // // 2 读取odps+表信息
 | 
	
		
			
				|  |  | +    // val odpsOps = env.getODPS(sc)
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    // // 3 循环执行数据生产
 | 
	
		
			
				|  |  | +    // val timeRange = MyDateUtils.getDateHourRange(beginStr, endStr)
 | 
	
		
			
				|  |  | +    // for (dt_hh <- timeRange) {
 | 
	
		
			
				|  |  | +    //   val dt = dt_hh.substring(0, 8)
 | 
	
		
			
				|  |  | +    //   val hh = dt_hh.substring(8, 10)
 | 
	
		
			
				|  |  | +    //   val partition = s"dt=$dt,hh=$hh"
 | 
	
		
			
				|  |  | +    //   if (filterHours.nonEmpty && filterHours.contains(hh)) {
 | 
	
		
			
				|  |  | +    //     println("不执行partiton:" + partition)
 | 
	
		
			
				|  |  | +    //   } else {
 | 
	
		
			
				|  |  | +    //     println("开始执行partiton:" + partition)
 | 
	
		
			
				|  |  | +    //     val odpsData = odpsOps.readTable(project = project,
 | 
	
		
			
				|  |  | +    //         table = table,
 | 
	
		
			
				|  |  | +    //         partition = partition,
 | 
	
		
			
				|  |  | +    //         transfer = func,
 | 
	
		
			
				|  |  | +    //         numPartition = tablePart)
 | 
	
		
			
				|  |  | +    //       .map(record => {
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val ts = record.getString("ts").toInt
 | 
	
		
			
				|  |  | +    //         val cid = record.getString("cid")
 | 
	
		
			
				|  |  | +    //         val apptype = record.getString("apptype")
 | 
	
		
			
				|  |  | +    //         val extend: JSONObject = if (record.isNull("extend")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("extend"))
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val featureMap = new JSONObject()
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val b1: JSONObject = if (record.isNull("b1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b1_feature"))
 | 
	
		
			
				|  |  | +    //         val b2: JSONObject = if (record.isNull("b2_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b2_feature"))
 | 
	
		
			
				|  |  | +    //         val b3: JSONObject = if (record.isNull("b3_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b3_feature"))
 | 
	
		
			
				|  |  | +    //         val b4: JSONObject = if (record.isNull("b4_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b4_feature"))
 | 
	
		
			
				|  |  | +    //         val b5: JSONObject = if (record.isNull("b5_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b5_feature"))
 | 
	
		
			
				|  |  | +    //         val b6: JSONObject = if (record.isNull("b6_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b6_feature"))
 | 
	
		
			
				|  |  | +    //         val b7: JSONObject = if (record.isNull("b7_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b7_feature"))
 | 
	
		
			
				|  |  | +    //         val b8: JSONObject = if (record.isNull("b8_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b8_feature"))
 | 
	
		
			
				|  |  | +    //         val b9: JSONObject = if (record.isNull("b9_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("b9_feature"))
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         featureMap.put("cid_" + cid, idDefaultValue)
 | 
	
		
			
				|  |  | +    //         if (b1.containsKey("adid") && b1.getString("adid").nonEmpty) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("adid_" + b1.getString("adid"), idDefaultValue)
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (b1.containsKey("adverid") && b1.getString("adverid").nonEmpty) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("adverid_" + b1.getString("adverid"), idDefaultValue)
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (b1.containsKey("targeting_conversion") && b1.getString("targeting_conversion").nonEmpty) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("targeting_conversion_" + b1.getString("targeting_conversion"), idDefaultValue)
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val hour = DateTimeUtil.getHourByTimestamp(ts)
 | 
	
		
			
				|  |  | +    //         featureMap.put("hour_" + hour, idDefaultValue)
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val dayOfWeek = DateTimeUtil.getDayOrWeekByTimestamp(ts)
 | 
	
		
			
				|  |  | +    //         featureMap.put("dayofweek_" + dayOfWeek, idDefaultValue);
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         featureMap.put("apptype_" + apptype, idDefaultValue);
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         if (extend.containsKey("abcode") && extend.getString("abcode").nonEmpty) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("abcode_" + extend.getString("abcode"), idDefaultValue)
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         if (b1.containsKey("cpa")) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("cpa", b1.getString("cpa").toDouble)
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (b1.containsKey("weight") && b1.getString("weight").nonEmpty) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("weight", b1.getString("weight").toDouble)
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         for ((bn, prefix1) <- List(
 | 
	
		
			
				|  |  | +    //           (b2, "b2"), (b3, "b3"), (b4, "b4"), (b5, "b5"), (b8, "b8"), (b9, "b9")
 | 
	
		
			
				|  |  | +    //         )) {
 | 
	
		
			
				|  |  | +    //           for (prefix2 <- List(
 | 
	
		
			
				|  |  | +    //             "1h", "2h", "3h", "4h", "5h", "6h", "12h", "1d", "3d", "7d", "today", "yesterday"
 | 
	
		
			
				|  |  | +    //           )) {
 | 
	
		
			
				|  |  | +    //             val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
	
		
			
				|  |  | +    //             val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
	
		
			
				|  |  | +    //             val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
	
		
			
				|  |  | +    //             val f4 = conver
 | 
	
		
			
				|  |  | +    //             val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5)
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "click", click)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*log(view)", conver * RankExtractorFeature_20240530.calLog(view))
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*ctcvr", conver * f2)
 | 
	
		
			
				|  |  | +    //           }
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         for ((bn, prefix1) <- List(
 | 
	
		
			
				|  |  | +    //           (b6, "b6"), (b7, "b7")
 | 
	
		
			
				|  |  | +    //         )) {
 | 
	
		
			
				|  |  | +    //           for (prefix2 <- List(
 | 
	
		
			
				|  |  | +    //             "7d", "14d"
 | 
	
		
			
				|  |  | +    //           )) {
 | 
	
		
			
				|  |  | +    //             val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble
 | 
	
		
			
				|  |  | +    //             val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
	
		
			
				|  |  | +    //             val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
	
		
			
				|  |  | +    //             val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
	
		
			
				|  |  | +    //             val f4 = conver
 | 
	
		
			
				|  |  | +    //             val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5)
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "click", click)
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*log(view)", conver * RankExtractorFeature_20240530.calLog(view))
 | 
	
		
			
				|  |  | +    //             featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver*ctcvr", conver * f2)
 | 
	
		
			
				|  |  | +    //           }
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val c1: JSONObject = if (record.isNull("c1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("c1_feature"))
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val midActionList = if (c1.containsKey("action") && c1.getString("action").nonEmpty) {
 | 
	
		
			
				|  |  | +    //           c1.getString("action").split(",").map(r => {
 | 
	
		
			
				|  |  | +    //             val rList = r.split(":")
 | 
	
		
			
				|  |  | +    //             (rList(0), (rList(1).toInt, rList(2).toInt, rList(3).toInt, rList(4).toInt, rList(5)))
 | 
	
		
			
				|  |  | +    //           }).sortBy(-_._2._1).toList
 | 
	
		
			
				|  |  | +    //         } else {
 | 
	
		
			
				|  |  | +    //           new ArrayBuffer[(String, (Int, Int, Int, Int, String))]().toList
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         // u特征
 | 
	
		
			
				|  |  | +    //         val viewAll = midActionList.size.toDouble
 | 
	
		
			
				|  |  | +    //         val clickAll = midActionList.map(_._2._2).sum.toDouble
 | 
	
		
			
				|  |  | +    //         val converAll = midActionList.map(_._2._3).sum.toDouble
 | 
	
		
			
				|  |  | +    //         val incomeAll = midActionList.map(_._2._4).sum.toDouble
 | 
	
		
			
				|  |  | +    //         featureMap.put("viewAll", viewAll)
 | 
	
		
			
				|  |  | +    //         featureMap.put("clickAll", clickAll)
 | 
	
		
			
				|  |  | +    //         featureMap.put("converAll", converAll)
 | 
	
		
			
				|  |  | +    //         featureMap.put("incomeAll", incomeAll)
 | 
	
		
			
				|  |  | +    //         featureMap.put("ctr_all", RankExtractorFeature_20240530.calDiv(clickAll, viewAll))
 | 
	
		
			
				|  |  | +    //         featureMap.put("ctcvr_all", RankExtractorFeature_20240530.calDiv(converAll, viewAll))
 | 
	
		
			
				|  |  | +    //         featureMap.put("cvr_all", RankExtractorFeature_20240530.calDiv(clickAll, converAll))
 | 
	
		
			
				|  |  | +    //         featureMap.put("ecpm_all", RankExtractorFeature_20240530.calDiv(incomeAll * 1000, viewAll))
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         // ui特征
 | 
	
		
			
				|  |  | +    //         val midTimeDiff = scala.collection.mutable.Map[String, Double]()
 | 
	
		
			
				|  |  | +    //         midActionList.foreach {
 | 
	
		
			
				|  |  | +    //           case (cid, (ts_history, click, conver, income, title)) =>
 | 
	
		
			
				|  |  | +    //             if (!midTimeDiff.contains("timediff_view_" + cid)) {
 | 
	
		
			
				|  |  | +    //               midTimeDiff.put("timediff_view_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
	
		
			
				|  |  | +    //             }
 | 
	
		
			
				|  |  | +    //             if (!midTimeDiff.contains("timediff_click_" + cid) && click > 0) {
 | 
	
		
			
				|  |  | +    //               midTimeDiff.put("timediff_click_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
	
		
			
				|  |  | +    //             }
 | 
	
		
			
				|  |  | +    //             if (!midTimeDiff.contains("timediff_conver_" + cid) && conver > 0) {
 | 
	
		
			
				|  |  | +    //               midTimeDiff.put("timediff_conver_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
	
		
			
				|  |  | +    //             }
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val midActionStatic = scala.collection.mutable.Map[String, Double]()
 | 
	
		
			
				|  |  | +    //         midActionList.foreach {
 | 
	
		
			
				|  |  | +    //           case (cid, (ts_history, click, conver, income, title)) =>
 | 
	
		
			
				|  |  | +    //             midActionStatic.put("actionstatic_view_" + cid, 1.0 + midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //             midActionStatic.put("actionstatic_click_" + cid, click + midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //             midActionStatic.put("actionstatic_conver_" + cid, conver + midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //             midActionStatic.put("actionstatic_income_" + cid, income + midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         if (midTimeDiff.contains("timediff_view_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("timediff_view", midTimeDiff.getOrDefault("timediff_view_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midTimeDiff.contains("timediff_click_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("timediff_click", midTimeDiff.getOrDefault("timediff_click_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midTimeDiff.contains("timediff_conver_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("timediff_conver", midTimeDiff.getOrDefault("timediff_conver_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midActionStatic.contains("actionstatic_view_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("actionstatic_view", midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("actionstatic_click", midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midActionStatic.contains("actionstatic_conver_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("actionstatic_conver", midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midActionStatic.contains("actionstatic_income_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("actionstatic_income", midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("actionstatic_ctr", RankExtractorFeature_20240530.calDiv(
 | 
	
		
			
				|  |  | +    //             midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0),
 | 
	
		
			
				|  |  | +    //             midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)
 | 
	
		
			
				|  |  | +    //           ))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("actionstatic_conver_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("actionstatic_ctcvr", RankExtractorFeature_20240530.calDiv(
 | 
	
		
			
				|  |  | +    //             midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0),
 | 
	
		
			
				|  |  | +    //             midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)
 | 
	
		
			
				|  |  | +    //           ))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         if (midActionStatic.contains("actionstatic_conver_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
	
		
			
				|  |  | +    //           featureMap.put("actionstatic_cvr", RankExtractorFeature_20240530.calDiv(
 | 
	
		
			
				|  |  | +    //             midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0),
 | 
	
		
			
				|  |  | +    //             midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0)
 | 
	
		
			
				|  |  | +    //           ))
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val e1: JSONObject = if (record.isNull("e1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("e1_feature"))
 | 
	
		
			
				|  |  | +    //         val e2: JSONObject = if (record.isNull("e2_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("e2_feature"))
 | 
	
		
			
				|  |  | +    //         val title = b1.getOrDefault("cidtitle", "").toString
 | 
	
		
			
				|  |  | +    //         if (title.nonEmpty) {
 | 
	
		
			
				|  |  | +    //           for ((en, prefix1) <- List((e1, "e1"), (e2, "e2"))) {
 | 
	
		
			
				|  |  | +    //             for (prefix2 <- List("tags_3d", "tags_7d", "tags_14d")) {
 | 
	
		
			
				|  |  | +    //               if (en.nonEmpty && en.containsKey(prefix2) && en.getString(prefix2).nonEmpty) {
 | 
	
		
			
				|  |  | +    //                 val (f1, f2, f3, f4) = funcC34567ForTags(en.getString(prefix2), title)
 | 
	
		
			
				|  |  | +    //                 featureMap.put(prefix1 + "_" + prefix2 + "_matchnum", f1)
 | 
	
		
			
				|  |  | +    //                 featureMap.put(prefix1 + "_" + prefix2 + "_maxscore", f3)
 | 
	
		
			
				|  |  | +    //                 featureMap.put(prefix1 + "_" + prefix2 + "_avgscore", f4)
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //               }
 | 
	
		
			
				|  |  | +    //             }
 | 
	
		
			
				|  |  | +    //           }
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val d1: JSONObject = if (record.isNull("d1_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("d1_feature"))
 | 
	
		
			
				|  |  | +    //         val d2: JSONObject = if (record.isNull("d2_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("d2_feature"))
 | 
	
		
			
				|  |  | +    //         val d3: JSONObject = if (record.isNull("d3_feature")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("d3_feature"))
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         if (d1.nonEmpty) {
 | 
	
		
			
				|  |  | +    //           for (prefix <- List("3h", "6h", "12h", "1d", "3d", "7d")) {
 | 
	
		
			
				|  |  | +    //             val view = if (!d1.containsKey("ad_view_" + prefix)) 0D else d1.getIntValue("ad_view_" + prefix).toDouble
 | 
	
		
			
				|  |  | +    //             val click = if (!d1.containsKey("ad_click_" + prefix)) 0D else d1.getIntValue("ad_click_" + prefix).toDouble
 | 
	
		
			
				|  |  | +    //             val conver = if (!d1.containsKey("ad_conversion_" + prefix)) 0D else d1.getIntValue("ad_conversion_" + prefix).toDouble
 | 
	
		
			
				|  |  | +    //             val income = if (!d1.containsKey("ad_income_" + prefix)) 0D else d1.getIntValue("ad_income_" + prefix).toDouble
 | 
	
		
			
				|  |  | +    //             val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
	
		
			
				|  |  | +    //             val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
	
		
			
				|  |  | +    //             val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
	
		
			
				|  |  | +    //             val f4 = conver
 | 
	
		
			
				|  |  | +    //             val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
	
		
			
				|  |  | +    //             featureMap.put("d1_feature" + "_" + prefix + "_" + "ctr", f1)
 | 
	
		
			
				|  |  | +    //             featureMap.put("d1_feature" + "_" + prefix + "_" + "ctcvr", f2)
 | 
	
		
			
				|  |  | +    //             featureMap.put("d1_feature" + "_" + prefix + "_" + "cvr", f3)
 | 
	
		
			
				|  |  | +    //             featureMap.put("d1_feature" + "_" + prefix + "_" + "conver", f4)
 | 
	
		
			
				|  |  | +    //             featureMap.put("d1_feature" + "_" + prefix + "_" + "ecpm", f5)
 | 
	
		
			
				|  |  | +    //           }
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val vidRankMaps = scala.collection.mutable.Map[String, scala.collection.immutable.Map[String, Double]]()
 | 
	
		
			
				|  |  | +    //         if (d2.nonEmpty) {
 | 
	
		
			
				|  |  | +    //           d2.foreach(r => {
 | 
	
		
			
				|  |  | +    //             val key = r._1
 | 
	
		
			
				|  |  | +    //             val value = d2.getString(key).split(",").map(r => {
 | 
	
		
			
				|  |  | +    //               val rList = r.split(":")
 | 
	
		
			
				|  |  | +    //               (rList(0), rList(2).toDouble)
 | 
	
		
			
				|  |  | +    //             }).toMap
 | 
	
		
			
				|  |  | +    //             vidRankMaps.put(key, value)
 | 
	
		
			
				|  |  | +    //           })
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         for (prefix1 <- List("ctr", "ctcvr", "ecpm")) {
 | 
	
		
			
				|  |  | +    //           for (prefix2 <- List("1d", "3d", "7d", "14d")) {
 | 
	
		
			
				|  |  | +    //             if (vidRankMaps.contains(prefix1 + "_" + prefix2)) {
 | 
	
		
			
				|  |  | +    //               val rank = vidRankMaps(prefix1 + "_" + prefix2).getOrDefault(cid, 0.0)
 | 
	
		
			
				|  |  | +    //               if (rank >= 1.0) {
 | 
	
		
			
				|  |  | +    //                 featureMap.put("vid_rank_" + prefix1 + "_" + prefix2, 1.0 / rank)
 | 
	
		
			
				|  |  | +    //               }
 | 
	
		
			
				|  |  | +    //             }
 | 
	
		
			
				|  |  | +    //           }
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         if (d3.nonEmpty) {
 | 
	
		
			
				|  |  | +    //           val vTitle = d3.getString("title")
 | 
	
		
			
				|  |  | +    //           val score = Similarity.conceptSimilarity(title, vTitle)
 | 
	
		
			
				|  |  | +    //           featureMap.put("ctitle_vtitle_similarity", score);
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         /*
 | 
	
		
			
				|  |  | +    //         广告
 | 
	
		
			
				|  |  | +    //           sparse:cid adid adverid targeting_conversion
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //           cpa --> 1个
 | 
	
		
			
				|  |  | +    //           adverid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr conver ecpm  --> 30个
 | 
	
		
			
				|  |  | +    //           cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | +    //           地理//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | +    //           app//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | +    //           手机品牌//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | +    //           系统 无数据
 | 
	
		
			
				|  |  | +    //           week//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个
 | 
	
		
			
				|  |  | +    //           hour//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         用户
 | 
	
		
			
				|  |  | +    //           用户历史 点击/转化 的title tag;3d 7d 14d; cid的title; 数量/最高分/平均分 --> 18个
 | 
	
		
			
				|  |  | +    //           用户历史 14d 看过/点过/转化次数/income; ctr cvr ctcvr ecpm;  --> 8个
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //           用户到cid的ui特征 --> 10个
 | 
	
		
			
				|  |  | +    //             1/用户最近看过这个cid的时间间隔
 | 
	
		
			
				|  |  | +    //             1/用户最近点过这个cid的时间间隔
 | 
	
		
			
				|  |  | +    //             1/用户最近转过这个cid的时间间隔
 | 
	
		
			
				|  |  | +    //             用户看过这个cid多少次
 | 
	
		
			
				|  |  | +    //             用户点过这个cid多少次
 | 
	
		
			
				|  |  | +    //             用户转过这个cid多少次
 | 
	
		
			
				|  |  | +    //             用户对这个cid花了多少钱
 | 
	
		
			
				|  |  | +    //             用户对这个cid的ctr ctcvr cvr
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         视频
 | 
	
		
			
				|  |  | +    //           title与cid的 sim-score-1/-2 无数据
 | 
	
		
			
				|  |  | +    //           vid//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
	
		
			
				|  |  | +    //           vid//cid下的 1d 3d 7d 14d、 ctr ctcvr ecpm 的rank值 倒数 --> 12个
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //          */
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         //4 处理label信息。
 | 
	
		
			
				|  |  | +    //         val labels = new JSONObject
 | 
	
		
			
				|  |  | +    //         for (labelKey <- List("ad_is_click", "ad_is_conversion")) {
 | 
	
		
			
				|  |  | +    //           if (!record.isNull(labelKey)) {
 | 
	
		
			
				|  |  | +    //             labels.put(labelKey, record.getString(labelKey))
 | 
	
		
			
				|  |  | +    //           }
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         //5 处理log key表头。
 | 
	
		
			
				|  |  | +    //         val mid = record.getString("mid")
 | 
	
		
			
				|  |  | +    //         val allfeature = if (record.isNull("allfeaturemap")) new JSONObject() else
 | 
	
		
			
				|  |  | +    //           JSON.parseObject(record.getString("allfeaturemap"))
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //         val headvideoid = record.getString("headvideoid")
 | 
	
		
			
				|  |  | +    //         // val logKey = (apptype, mid, cid, ts, headvideoid).productIterator.mkString(",")
 | 
	
		
			
				|  |  | +    //         val labelKey = labels.toString()
 | 
	
		
			
				|  |  | +    //         val label = record.getString("ad_is_conversion")
 | 
	
		
			
				|  |  | +    //         //6 拼接数据,保存。
 | 
	
		
			
				|  |  | +    //         (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap)
 | 
	
		
			
				|  |  | +    //       }).filter {
 | 
	
		
			
				|  |  | +    //         case (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap) =>
 | 
	
		
			
				|  |  | +    //           !(allfeature.isEmpty || allfeature.containsKey("weight_sum") || allfeature.contains("weight"))
 | 
	
		
			
				|  |  | +    //       }.mapPartitions(row => {
 | 
	
		
			
				|  |  | +    //         val result = new ArrayBuffer[String]()
 | 
	
		
			
				|  |  | +    //         val bucketsMap = bucketsMap_br.value
 | 
	
		
			
				|  |  | +    //         row.foreach {
 | 
	
		
			
				|  |  | +    //           case (apptype, mid, cid, ts, headvideoid, label, allfeature, featureMap) =>
 | 
	
		
			
				|  |  | +    //             val offlineFeatureMap = featureMap.map(r => {
 | 
	
		
			
				|  |  | +    //               val score = r._2.toString.toDouble
 | 
	
		
			
				|  |  | +    //               val name = r._1
 | 
	
		
			
				|  |  | +    //               if (score > 1E-8) {
 | 
	
		
			
				|  |  | +    //                 if (bucketsMap.contains(name)) {
 | 
	
		
			
				|  |  | +    //                   val (bucketsNum, buckets) = bucketsMap(name)
 | 
	
		
			
				|  |  | +    //                   val scoreNew = 1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0)
 | 
	
		
			
				|  |  | +    //                   name + ":" + scoreNew.toString
 | 
	
		
			
				|  |  | +    //                 } else {
 | 
	
		
			
				|  |  | +    //                   name + ":" + score.toString
 | 
	
		
			
				|  |  | +    //                 }
 | 
	
		
			
				|  |  | +    //               } else {
 | 
	
		
			
				|  |  | +    //                 ""
 | 
	
		
			
				|  |  | +    //               }
 | 
	
		
			
				|  |  | +    //             }).filter(_.nonEmpty)
 | 
	
		
			
				|  |  | +    //             result.add(
 | 
	
		
			
				|  |  | +    //               (apptype, mid, cid, ts, headvideoid, label, allfeature.toString(), offlineFeatureMap.iterator.mkString(",")).productIterator.mkString("\t")
 | 
	
		
			
				|  |  | +    //             )
 | 
	
		
			
				|  |  | +    //         }
 | 
	
		
			
				|  |  | +    //         result.iterator
 | 
	
		
			
				|  |  | +    //       })
 | 
	
		
			
				|  |  | +    //
 | 
	
		
			
				|  |  | +    //     // 4 保存数据到hdfs
 | 
	
		
			
				|  |  | +    //     val savePartition = dt + hh
 | 
	
		
			
				|  |  | +    //     val hdfsPath = savePath + "/" + savePartition
 | 
	
		
			
				|  |  | +    //     if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
 | 
	
		
			
				|  |  | +    //       println("删除路径并开始数据写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +    //       MyHdfsUtils.delete_hdfs_path(hdfsPath)
 | 
	
		
			
				|  |  | +    //       odpsData.coalesce(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
 | 
	
		
			
				|  |  | +    //     } else {
 | 
	
		
			
				|  |  | +    //       println("路径不合法,无法写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +    //     }
 | 
	
		
			
				|  |  | +    //   }
 | 
	
		
			
				|  |  | +    // }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |      val data2 = sc.textFile(savePath + "/" + readDate + "*").mapPartitions(row => {
 | 
	
		
			
				|  |  | -      val result = new ArrayBuffer[(String, List[String], List[String], List[String], List[String])]()
 | 
	
		
			
				|  |  | +      val result = new ArrayBuffer[(String, List[String], List[String], List[String], List[String], List[String])]()
 | 
	
		
			
				|  |  |        // 680实验,517个特征
 | 
	
		
			
				|  |  |        row.foreach(r => {
 | 
	
		
			
				|  |  |          val rList = r.split("\t")
 | 
	
	
		
			
				|  | @@ -475,6 +475,9 @@ object makedata_31_bucketDataPrint_20240821 {
 | 
	
		
			
				|  |  |          val label = rList(5).toString
 | 
	
		
			
				|  |  |          val allFeatureMap = JSON.parseObject(rList(6)).toMap.map(r => (r._1, r._2.toString))
 | 
	
		
			
				|  |  |          val offlineFeature = rList(7).split(",").map(r => (r.split(":")(0), r.split(":")(1))).toMap
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +        val contentList = contentList_br.value
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |          if (!allFeatureMap.containsKey("cid_" + cid)) {
 | 
	
		
			
				|  |  |            allFeatureMap.put("cid_" + cid, "0.1");
 | 
	
		
			
				|  |  |          }
 | 
	
	
		
			
				|  | @@ -501,17 +504,34 @@ object makedata_31_bucketDataPrint_20240821 {
 | 
	
		
			
				|  |  |              }
 | 
	
		
			
				|  |  |          }.filter(_.nonEmpty).toList
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +        val allFeatureV3 = contentList.map {
 | 
	
		
			
				|  |  | +          case (name) =>
 | 
	
		
			
				|  |  | +            val b9FeatureSet = Set("b9_1h_ctr", "b9_1h_ctcvr", "b9_1h_cvr", "b9_1h_conver", "b9_1h_click", "b9_1h_conver*log(view)", "b9_1h_conver*ctcvr", "b9_2h_ctr", "b9_2h_ctcvr", "b9_2h_cvr", "b9_2h_conver", "b9_2h_click", "b9_2h_conver*log(view)", "b9_2h_conver*ctcvr", "b9_3h_ctr", "b9_3h_ctcvr", "b9_3h_cvr", "b9_3h_conver", "b9_3h_click", "b9_3h_conver*log(view)", "b9_3h_conver*ctcvr", "b9_6h_ctr", "b9_6h_ctcvr", "b9_6h_cvr", "b9_6h_conver", "b9_6h_click", "b9_6h_conver*log(view)", "b9_6h_conver*ctcvr", "b9_12h_ctr", "b9_12h_ctcvr", "b9_12h_cvr", "b9_12h_conver", "b9_12h_click", "b9_12h_conver*log(view)", "b9_12h_conver*ctcvr", "b9_1d_ctr", "b9_1d_ctcvr", "b9_1d_cvr", "b9_1d_conver", "b9_1d_click", "b9_1d_conver*log(view)", "b9_1d_conver*ctcvr", "b9_3d_ctr", "b9_3d_ctcvr", "b9_3d_cvr", "b9_3d_conver", "b9_3d_click", "b9_3d_conver*log(view)", "b9_3d_conver*ctcvr", "b9_7d_ctr", "b9_7d_ctcvr", "b9_7d_cvr", "b9_7d_conver", "b9_7d_click", "b9_7d_conver*log(view)", "b9_7d_conver*ctcvr", "b9_yesterday_ctr", "b9_yesterday_ctcvr", "b9_yesterday_cvr", "b9_yesterday_conver", "b9_yesterday_click", "b9_yesterday_conver*log(view)", "b9_yesterday_conver*ctcvr", "b9_today_ctr", "b9_today_ctcvr", "b9_today_cvr", "b9_today_conver", "b9_today_click", "b9_today_conver*log(view)", "b9_today_conver*ctcvr")
 | 
	
		
			
				|  |  | +            if (b9FeatureSet.contains(name)) {
 | 
	
		
			
				|  |  | +              if (offlineFeature.contains(name)) {
 | 
	
		
			
				|  |  | +                name + ":" + offlineFeature(name)
 | 
	
		
			
				|  |  | +              } else {
 | 
	
		
			
				|  |  | +                ""
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            } else {
 | 
	
		
			
				|  |  | +              if (allFeatureMap.contains(name)) {
 | 
	
		
			
				|  |  | +                name + ":" + allFeatureMap(name)
 | 
	
		
			
				|  |  | +              } else {
 | 
	
		
			
				|  |  | +                ""
 | 
	
		
			
				|  |  | +              }
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |          val ctcvrFeature = offlineFeature.map {
 | 
	
		
			
				|  |  | -          case (key, value) => {
 | 
	
		
			
				|  |  | +          case (key, value) =>
 | 
	
		
			
				|  |  |              if (key.contains("ctcvr") || key.contains("Ctcvr")) {
 | 
	
		
			
				|  |  |                key + ":" + value
 | 
	
		
			
				|  |  |              } else {
 | 
	
		
			
				|  |  |                ""
 | 
	
		
			
				|  |  |              }
 | 
	
		
			
				|  |  | -          }
 | 
	
		
			
				|  |  |          }.filter(_.nonEmpty).toList
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -        result.add((label, offlineFeatureList, allFeatureV1, allFeatureV2, ctcvrFeature))
 | 
	
		
			
				|  |  | +        result.add((label, offlineFeatureList, allFeatureV1, allFeatureV2, ctcvrFeature, allFeatureV3))
 | 
	
		
			
				|  |  |        })
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |        result.iterator
 | 
	
	
		
			
				|  | @@ -553,6 +573,15 @@ object makedata_31_bucketDataPrint_20240821 {
 | 
	
		
			
				|  |  |        println("路径不合法,无法写入:" + ctcvrFeature)
 | 
	
		
			
				|  |  |      }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +    val allFeatureV3 = "/dw/recommend/model/33_for_check_all_v3/" + readDate
 | 
	
		
			
				|  |  | +    if (allFeatureV3.nonEmpty && allFeatureV3.startsWith("/dw/recommend/model/")) {
 | 
	
		
			
				|  |  | +      println("删除路径并开始数据写入:" + allFeatureV3)
 | 
	
		
			
				|  |  | +      MyHdfsUtils.delete_hdfs_path(allFeatureV3)
 | 
	
		
			
				|  |  | +      data2.map(r => r._1 + "\t" + r._6.mkString("\t")).saveAsTextFile(allFeatureV3, classOf[GzipCodec])
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      println("路径不合法,无法写入:" + allFeatureV3)
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  |    }
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |    def func(record: Record, schema: TableSchema): Record = {
 |