|
@@ -9,6 +9,7 @@ import org.apache.spark.sql.SparkSession
|
|
|
import scala.collection.JavaConversions._
|
|
|
import scala.collection.mutable.ArrayBuffer
|
|
|
import scala.io.Source
|
|
|
+
|
|
|
/*
|
|
|
|
|
|
*/
|
|
@@ -22,6 +23,19 @@ object makedata_ad_33_bucketData_20240726 {
|
|
|
.getOrCreate()
|
|
|
val sc = spark.sparkContext
|
|
|
|
|
|
+
|
|
|
+ // 1 读取参数
|
|
|
+ val param = ParamUtils.parseArgs(args)
|
|
|
+ val readPath = param.getOrElse("readPath", "/dw/recommend/model/31_ad_sample_data/")
|
|
|
+ val savePath = param.getOrElse("savePath", "/dw/recommend/model/33_ad_train_data/")
|
|
|
+ val beginStr = param.getOrElse("beginStr", "20240620")
|
|
|
+ val endStr = param.getOrElse("endStr", "20240620")
|
|
|
+ val repartition = param.getOrElse("repartition", "100").toInt
|
|
|
+ val filterNames = param.getOrElse("filterNames", "").split(",").toSet
|
|
|
+ val whatLabel = param.getOrElse("whatLabel", "ad_is_conversion")
|
|
|
+ val featureNameFile = param.getOrElse("featureNameFile", "20240718_ad_feature_name.txt");
|
|
|
+
|
|
|
+
|
|
|
val loader = getClass.getClassLoader
|
|
|
|
|
|
val resourceUrlBucket = loader.getResource("20240718_ad_bucket_688.txt")
|
|
@@ -37,88 +51,96 @@ object makedata_ad_33_bucketData_20240726 {
|
|
|
val bucketsMap = buckets.split("\n")
|
|
|
.map(r => r.replace(" ", "").replaceAll("\n", ""))
|
|
|
.filter(r => r.nonEmpty)
|
|
|
- .map(r =>{
|
|
|
+ .map(r => {
|
|
|
val rList = r.split("\t")
|
|
|
(rList(0), (rList(1).toDouble, rList(2).split(",").map(_.toDouble)))
|
|
|
}).toMap
|
|
|
val bucketsMap_br = sc.broadcast(bucketsMap)
|
|
|
|
|
|
+ val resourceUrl = loader.getResource(featureNameFile)
|
|
|
+ val content =
|
|
|
+ if (resourceUrl != null) {
|
|
|
+ val content = Source.fromURL(resourceUrl).getLines().mkString("\n")
|
|
|
+ Source.fromURL(resourceUrl).close()
|
|
|
+ content
|
|
|
+ } else {
|
|
|
+ ""
|
|
|
+ }
|
|
|
|
|
|
- // 1 读取参数
|
|
|
- val param = ParamUtils.parseArgs(args)
|
|
|
- val readPath = param.getOrElse("readPath", "/dw/recommend/model/31_ad_sample_data/")
|
|
|
- val savePath = param.getOrElse("savePath", "/dw/recommend/model/33_ad_train_data/")
|
|
|
- val beginStr = param.getOrElse("beginStr", "20240620")
|
|
|
- val endStr = param.getOrElse("endStr", "20240620")
|
|
|
- val repartition = param.getOrElse("repartition", "100").toInt
|
|
|
- val filterNames = param.getOrElse("filterNames", "").split(",").toSet
|
|
|
- val whatLabel = param.getOrElse("whatLabel", "ad_is_conversion")
|
|
|
+ println()
|
|
|
+ println()
|
|
|
+ println()
|
|
|
+ println(content)
|
|
|
+ val contentList = content.split("\n")
|
|
|
+ .map(r => r.replace(" ", "").replaceAll("\n", ""))
|
|
|
+ .filter(r => r.nonEmpty).toList
|
|
|
|
|
|
val dateRange = MyDateUtils.getDateRange(beginStr, endStr)
|
|
|
for (date <- dateRange) {
|
|
|
println("开始执行:" + date)
|
|
|
- val data = sc.textFile(readPath + "/" + date + "*").map(r=>{
|
|
|
- val rList = r.split("\t")
|
|
|
- val logKey = rList(0)
|
|
|
- val labelKey = rList(1)
|
|
|
- val jsons = JSON.parseObject(rList(2))
|
|
|
- val features = scala.collection.mutable.Map[String, Double]()
|
|
|
- jsons.foreach(r => {
|
|
|
- features.put(r._1, jsons.getDoubleValue(r._1))
|
|
|
+ val data = sc.textFile(readPath + "/" + date + "*").map(r => {
|
|
|
+ val rList = r.split("\t")
|
|
|
+ val logKey = rList(0)
|
|
|
+ val labelKey = rList(1)
|
|
|
+ val jsons = JSON.parseObject(rList(2))
|
|
|
+ val features = scala.collection.mutable.Map[String, Double]()
|
|
|
+ jsons.foreach(r => {
|
|
|
+ features.put(r._1, jsons.getDoubleValue(r._1))
|
|
|
+ })
|
|
|
+ (logKey, labelKey, features)
|
|
|
})
|
|
|
- (logKey, labelKey, features)
|
|
|
- })
|
|
|
- .filter{
|
|
|
+ .filter {
|
|
|
case (logKey, labelKey, features) =>
|
|
|
val logKeyList = logKey.split(",")
|
|
|
val apptype = logKeyList(0)
|
|
|
!Set("12", "13").contains(apptype)
|
|
|
}
|
|
|
- .map{
|
|
|
+ .map {
|
|
|
case (logKey, labelKey, features) =>
|
|
|
val label = JSON.parseObject(labelKey).getOrDefault(whatLabel, "0").toString
|
|
|
|
|
|
- bucketsMap.foreach {
|
|
|
- case (name, scorer) => {
|
|
|
- if (!features.contains(name)){
|
|
|
- features.put(name, 0);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
(label, features)
|
|
|
}
|
|
|
.mapPartitions(row => {
|
|
|
val result = new ArrayBuffer[String]()
|
|
|
val bucketsMap = bucketsMap_br.value
|
|
|
- row.foreach{
|
|
|
+ row.foreach {
|
|
|
case (label, features) =>
|
|
|
- val featuresBucket = features.map{
|
|
|
- case (name, score) =>
|
|
|
- var ifFilter = false
|
|
|
- if (filterNames.nonEmpty){
|
|
|
- filterNames.foreach(r=> if (!ifFilter && name.contains(r)) {ifFilter = true} )
|
|
|
- }
|
|
|
- if (ifFilter){
|
|
|
- ""
|
|
|
- }else{
|
|
|
+ val featuresBucket = new ArrayBuffer[String]()
|
|
|
+ for (name <- contentList) {
|
|
|
+ var ifFilter = false
|
|
|
+ if (filterNames.nonEmpty) {
|
|
|
+ filterNames.foreach(r => if (!ifFilter && name.contains(r)) {
|
|
|
+ ifFilter = true
|
|
|
+ })
|
|
|
+ }
|
|
|
+ if (!ifFilter) {
|
|
|
+ if (features.contains(name)) {
|
|
|
+ val score = features(name)
|
|
|
if (score > 1E-8) {
|
|
|
if (bucketsMap.contains(name)) {
|
|
|
val (bucketsNum, buckets) = bucketsMap(name)
|
|
|
- val scoreNew = 0.01+1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0)
|
|
|
- name + ":" + scoreNew.toString
|
|
|
+ val scoreNew = 0.01 + 1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0)
|
|
|
+ featuresBucket.add(name + ":" + scoreNew.toString)
|
|
|
} else {
|
|
|
- name + ":" + score.toString
|
|
|
+ featuresBucket.add(name + ":" + score.toString)
|
|
|
}
|
|
|
} else {
|
|
|
- name + ":" + "0.01"
|
|
|
+ featuresBucket.add(name + ":" + "0.01")
|
|
|
}
|
|
|
+
|
|
|
+ } else {
|
|
|
+ featuresBucket.add(name + ":" + "0.01")
|
|
|
}
|
|
|
- }.filter(_.nonEmpty)
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
result.add(label + "\t" + featuresBucket.mkString("\t"))
|
|
|
}
|
|
|
+
|
|
|
result.iterator
|
|
|
- })
|
|
|
+ })
|
|
|
|
|
|
// 4 保存数据到hdfs
|
|
|
val hdfsPath = savePath + "/" + date
|
|
@@ -132,6 +154,5 @@ object makedata_ad_33_bucketData_20240726 {
|
|
|
}
|
|
|
|
|
|
|
|
|
-
|
|
|
}
|
|
|
}
|