| 
					
				 | 
			
			
				@@ -0,0 +1,187 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+package com.aliyun.odps.spark.examples.makedata 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.alibaba.fastjson.{JSON, JSONObject} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.TableSchema 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.data.Record 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils} 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import examples.dataloader.OfflineVlogShareLRFeatureExtractorV2 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import examples.extractor.ExtractorUtils 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.hadoop.io.compress.GzipCodec 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import org.apache.spark.sql.SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import java.util 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.JavaConversions._ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+import scala.collection.mutable.ArrayBuffer 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+object makedata_12_rosData_v3_noweight { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  def main(args: Array[String]) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val spark = SparkSession 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .builder() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .appName(this.getClass.getName) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      .getOrCreate() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val sc = spark.sparkContext 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 1 读取参数 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val param = ParamUtils.parseArgs(args) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val partitionPrefix = param.getOrElse("partitionPrefix", "dt=") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val beginStr = param.getOrElse("beginStr", "20230101") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val endStr = param.getOrElse("endStr", "20230101") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val readPath = param.getOrElse("readPath", "/dw/recommend/model/10_sample_data_v3/") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val savePath = param.getOrElse("savePath", "/dw/recommend/model/12_ros_data_v3_noweight/") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val featureVersion =  param.getOrElse("featureVersion", "v2") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val ifRepart = param.getOrElse("ifRepart", "10").toInt 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val labelVersion = param.getOrElse("labelVersion", "v1") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    // 3 循环执行数据生产 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    val dateRange = MyDateUtils.getDateRange(beginStr, endStr) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    for (date <- dateRange) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val partition = partitionPrefix + date 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("开始执行partiton:" + partition) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      var hdfsPath = readPath + "/" + partition 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      //1 样本过滤(分享样本、012345中的、可推荐的video、不同产品) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val data1 = sc.textFile(hdfsPath).map(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val rList = r.split("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val logKeyStr = rList(0) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val (mid, videoid, logtimestamp, apptype, pagesource_change, abcode, video_recommend) = ParamUtils.parseLogKey(logKeyStr) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val labelStr = rList(1) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val feaStr = rList(2) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val labelJson = JSON.parseObject(labelStr) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        val is_share = labelJson.getString("is_share") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        (logKeyStr, labelJson, feaStr, is_share, pagesource_change, video_recommend, apptype, logtimestamp.toLong) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }).filter({ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        case (logKeyStr, labelJson, feaStr, is_share, pagesource_change, video_recommend, apptype, logtimestamp) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val pages = Set("2") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val video_status = Set("-6") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val apps = Set("0", "4", "5", "21", "3", "6") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          "1".equals(is_share) && pages.contains(pagesource_change) && video_status.contains(video_recommend) && apps.contains(apptype) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      //2 样本采样 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val data2 = data1.map({ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        case (logKeyStr, labelJson, feaStr, is_share, pagesource_change, video_recommend, apptype, logtimestamp) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val feaJson = JSON.parseObject(feaStr) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val is_return = labelJson.getString("is_return") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          if ("0".equals(is_return)){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ("0", feaJson) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          }else{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            ("1", feaJson) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      //3 保留一份原始样本的中间数据 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      println("样本比例") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      data2.map(r=> (r._1, 1)).reduceByKey(_+_).map(r=> r._1 + "\t" + r._2).collect().foreach(println) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      //4 特征绝对值转换 如 0.456变成19 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val data3 = data2.map({ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        case (label, feaJson) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          Set( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_1day_ctr", "u_1day_str", "u_1day_rov", "u_1day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_3day_ctr", "u_3day_str", "u_3day_rov", "u_3day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_7day_ctr", "u_7day_str", "u_7day_rov", "u_7day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_3month_ctr", "u_3month_str", "u_3month_rov", "u_3month_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // ---------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1day_ctr", "i_1day_str", "i_1day_rov", "i_1day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_3day_ctr", "i_3day_str", "i_3day_rov", "i_3day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_7day_ctr", "i_7day_str", "i_7day_rov", "i_7day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_3month_ctr", "i_3month_str", "i_3month_rov", "i_3month_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // ---------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1day_ctr_rt", "i_1day_str_rt", "i_1day_ros_rt", "i_1day_rov_rt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1h_ctr_rt", "i_1h_str_rt", "i_1h_ros_rt", "i_1h_rov_rt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          ).foreach(key =>{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (feaJson.containsKey(key)){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              val value = ExtractorUtils.ceilLogRate(feaJson.getString(key).toDouble) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              feaJson.put(key, value.toString) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          Set( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_7day_exp_cnt", "u_7day_click_cnt", "u_7day_share_cnt", "u_7day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_3month_exp_cnt", "u_3month_click_cnt", "u_3month_share_cnt", "u_3month_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // ---------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "total_time", "play_count", "play_count_total", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_7day_exp_cnt", "i_7day_click_cnt", "i_7day_share_cnt", "i_7day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_3month_exp_cnt", "i_3month_click_cnt", "i_3month_share_cnt", "i_3month_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // ---------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "share_uv_list_1day_6_avg", "share_uv_list_1day_6_var", "share_uv_list_1day_diff_6_avg", "share_uv_list_1day_diff_6_var", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "return_uv_list_1day_6_avg", "return_uv_list_1day_6_var", "return_uv_list_1day_diff_6_avg", "return_uv_list_1day_diff_6_var", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "share_uv_list_1h_6_avg", "share_uv_list_1h_6_var", "share_uv_list_1h_diff_6_avg", "share_uv_list_1h_diff_6_var", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "return_uv_list_1h_6_avg", "return_uv_list_1h_6_var", "return_uv_list_1h_diff_6_avg", "return_uv_list_1h_diff_6_var", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // ---------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "view_pv_list_1day", "view_uv_list_1day", "play_pv_list_1day", "play_uv_list_1day", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "share_pv_list_1day", "share_uv_list_1day", "return_uv_list_1day", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "p_view_uv_list_1day", "p_view_pv_list_1day", "p_return_uv_list_1day", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "share_uv_list_2day", "share_pv_list_2day", "share_uv_list_3day", "share_pv_list_3day", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            // ---------- 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "view_uv_list_1h", "view_pv_list_1h", "play_uv_list_1h", "play_pv_list_1h", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "share_uv_list_1h", "share_pv_list_1h", "return_uv_list_1h", "p_return_uv_list_1h" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          ).foreach(key => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (feaJson.containsKey(key)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              val value = ExtractorUtils.bucketCnt(feaJson.getString(key).toDouble) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              feaJson.put(key, value.toString) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          (label, feaJson) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      //5 libsvm 转换 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      val data4 = data3.map({ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        case (label, feaJson) => 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val feaSet = Set( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "ctx_week", "ctx_hour", "ctx_region", "ctx_city", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "machineinfo_brand", "machineinfo_model", "machineinfo_platform", "machineinfo_system", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_1day_exp_cnt", "u_1day_click_cnt", "u_1day_share_cnt", "u_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_3day_exp_cnt", "u_3day_click_cnt", "u_3day_share_cnt", "u_3day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_7day_exp_cnt", "u_7day_click_cnt", "u_7day_share_cnt", "u_7day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "total_time", "play_count_total", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1day_exp_cnt", "i_1day_click_cnt", "i_1day_share_cnt", "i_1day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_3day_exp_cnt", "i_3day_click_cnt", "i_3day_share_cnt", "i_3day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_7day_exp_cnt", "i_7day_click_cnt", "i_7day_share_cnt", "i_7day_return_cnt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_1day_ctr", "u_1day_str", "u_1day_rov", "u_1day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_3day_ctr", "u_3day_str", "u_3day_rov", "u_3day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "u_7day_ctr", "u_7day_str", "u_7day_rov", "u_7day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1day_ctr", "i_1day_str", "i_1day_rov", "i_1day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_3day_ctr", "i_3day_str", "i_3day_rov", "i_3day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_7day_ctr", "i_7day_str", "i_7day_rov", "i_7day_ros", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1day_ctr_rt", "i_1day_str_rt", "i_1day_ros_rt", "i_1day_rov_rt", 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            "i_1h_ctr_rt", "i_1h_str_rt", "i_1h_ros_rt", "i_1h_rov_rt" 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          ) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val feaMap = new util.HashMap[String, String]() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          feaSet.foreach(r => { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            if (feaJson.containsKey(r)) { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+              feaMap.put(r, feaJson.getString(r)) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val bytesFeatureExtractor = new OfflineVlogShareLRFeatureExtractorV2() 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          bytesFeatureExtractor.makeFeature4String(feaMap) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          val featureMap = bytesFeatureExtractor.featureMap 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          label + "\t" + featureMap.entries().map(r => r.getValue.getIdentifier + ":1").mkString("\t") 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      // 7 保存数据到hdfs 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      hdfsPath = savePath + "/" + partition 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("删除路径并开始数据写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        MyHdfsUtils.delete_hdfs_path(hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if (ifRepart == 0){ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          data4.saveAsTextFile(hdfsPath, classOf[GzipCodec]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        }else{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+          data4.repartition(ifRepart).saveAsTextFile(hdfsPath, classOf[GzipCodec]) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      }else{ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        println("路径不合法,无法写入:" + hdfsPath) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+      } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  def func(record: Record, schema: TableSchema): Record = { 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    record 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+  } 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+} 
			 |