|  | @@ -0,0 +1,94 @@
 | 
	
		
			
				|  |  | +package com.aliyun.odps.spark.examples.makedata_ad
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import com.alibaba.fastjson.JSON
 | 
	
		
			
				|  |  | +import com.aliyun.odps.spark.examples.myUtils.{MyHdfsUtils, ParamUtils}
 | 
	
		
			
				|  |  | +import org.apache.hadoop.io.compress.GzipCodec
 | 
	
		
			
				|  |  | +import org.apache.spark.sql.SparkSession
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import scala.collection.JavaConversions._
 | 
	
		
			
				|  |  | +import scala.collection.mutable.ArrayBuffer
 | 
	
		
			
				|  |  | +import scala.io.Source
 | 
	
		
			
				|  |  | +/*
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +object makedata_32_bucket_20240622 {
 | 
	
		
			
				|  |  | +  def main(args: Array[String]): Unit = {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val spark = SparkSession
 | 
	
		
			
				|  |  | +      .builder()
 | 
	
		
			
				|  |  | +      .appName(this.getClass.getName)
 | 
	
		
			
				|  |  | +      .getOrCreate()
 | 
	
		
			
				|  |  | +    val sc = spark.sparkContext
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val loader = getClass.getClassLoader
 | 
	
		
			
				|  |  | +    val resourceUrl = loader.getResource("20240622_ad_feature_name.txt")
 | 
	
		
			
				|  |  | +    val content =
 | 
	
		
			
				|  |  | +      if (resourceUrl != null) {
 | 
	
		
			
				|  |  | +        val content = Source.fromURL(resourceUrl).getLines().mkString("\n")
 | 
	
		
			
				|  |  | +        Source.fromURL(resourceUrl).close()
 | 
	
		
			
				|  |  | +        content
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        ""
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    println(content)
 | 
	
		
			
				|  |  | +    val contentList = content.split("\n")
 | 
	
		
			
				|  |  | +      .map(r=> r.replace(" ", "").replaceAll("\n", ""))
 | 
	
		
			
				|  |  | +      .filter(r=> r.nonEmpty).toList
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // 1 读取参数
 | 
	
		
			
				|  |  | +    val param = ParamUtils.parseArgs(args)
 | 
	
		
			
				|  |  | +    val readPath = param.getOrElse("readPath", "/dw/recommend/model/31_ad_sample_data/20240620*")
 | 
	
		
			
				|  |  | +    val savePath = param.getOrElse("savePath", "/dw/recommend/model/32_bucket_data/")
 | 
	
		
			
				|  |  | +    val fileName = param.getOrElse("fileName", "20240620_100")
 | 
	
		
			
				|  |  | +    val sampleRate = param.getOrElse("sampleRate", "1.0").toDouble
 | 
	
		
			
				|  |  | +    val bucketNum = param.getOrElse("bucketNum", "100").toInt
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val data = sc.textFile(readPath)
 | 
	
		
			
				|  |  | +    val data1 = data.map(r => {
 | 
	
		
			
				|  |  | +      val rList = r.split("\t")
 | 
	
		
			
				|  |  | +      val doubles = JSON.parseObject(rList(2)).mapValues(_.toString.toDouble)
 | 
	
		
			
				|  |  | +      doubles
 | 
	
		
			
				|  |  | +    }).sample(false, sampleRate ).repartition(20)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val result = new ArrayBuffer[String]()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    for (i <- contentList.indices){
 | 
	
		
			
				|  |  | +      println("特征:" + contentList(i))
 | 
	
		
			
				|  |  | +      val data2 = data1.map(r => r.getOrDefault(contentList(i), 0D)).filter(_ > 1E-8).collect().sorted
 | 
	
		
			
				|  |  | +      val len = data2.length
 | 
	
		
			
				|  |  | +      val oneBucketNum = (len - 1) / (bucketNum - 1) + 1 // 确保每个桶至少有一个元素
 | 
	
		
			
				|  |  | +      val buffers = new ArrayBuffer[Double]()
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      var lastBucketValue = data2(0) // 记录上一个桶的切分点
 | 
	
		
			
				|  |  | +      for (j <- 0 until len by oneBucketNum) {
 | 
	
		
			
				|  |  | +        val d = data2(j)
 | 
	
		
			
				|  |  | +        if (j > 0 && d != lastBucketValue) {
 | 
	
		
			
				|  |  | +          // 如果当前切分点不同于上一个切分点,则保存当前切分点
 | 
	
		
			
				|  |  | +          buffers += d
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        lastBucketValue = d // 更新上一个桶的切分点
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // 最后一个桶的结束点应该是数组的最后一个元素
 | 
	
		
			
				|  |  | +      if (!buffers.contains(data2.last)) {
 | 
	
		
			
				|  |  | +        buffers += data2.last
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +      result.add(contentList(i) + "\t" + bucketNum.toString + "\t" + buffers.mkString(","))
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    val data3 = sc.parallelize(result)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // 4 保存数据到hdfs
 | 
	
		
			
				|  |  | +    val hdfsPath = savePath + "/" + fileName
 | 
	
		
			
				|  |  | +    if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
 | 
	
		
			
				|  |  | +      println("删除路径并开始数据写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +      MyHdfsUtils.delete_hdfs_path(hdfsPath)
 | 
	
		
			
				|  |  | +      data3.repartition(1).saveAsTextFile(hdfsPath, classOf[GzipCodec])
 | 
	
		
			
				|  |  | +    } else {
 | 
	
		
			
				|  |  | +      println("路径不合法,无法写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 |