|
@@ -1,6 +1,8 @@
|
|
#!/bin/sh
|
|
#!/bin/sh
|
|
set -ex
|
|
set -ex
|
|
|
|
|
|
|
|
+source /root/anaconda3/bin/activate py37
|
|
|
|
+
|
|
# nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
|
|
# nohup sh handle_rov.sh > "$(date +%Y%m%d_%H%M%S)_handle_rov.log" 2>&1 &
|
|
|
|
|
|
# 原始数据table name
|
|
# 原始数据table name
|
|
@@ -13,129 +15,148 @@ begin_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
|
|
end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
|
|
end_early_2_Str="$(date -d '2 days ago' +%Y%m%d)"
|
|
beginHhStr=00
|
|
beginHhStr=00
|
|
endHhStr=23
|
|
endHhStr=23
|
|
|
|
+max_hour=05
|
|
|
|
+max_minute=00
|
|
# 各节点产出hdfs文件绝对路径
|
|
# 各节点产出hdfs文件绝对路径
|
|
|
|
+# 源数据文件
|
|
originDataPath=/dw/recommend/model/13_sample_data/
|
|
originDataPath=/dw/recommend/model/13_sample_data/
|
|
|
|
+# 特征值
|
|
valueDataPath=/dw/recommend/model/14_feature_data/
|
|
valueDataPath=/dw/recommend/model/14_feature_data/
|
|
|
|
+# 特征分桶
|
|
bucketDataPath=/dw/recommend/model/16_train_data/
|
|
bucketDataPath=/dw/recommend/model/16_train_data/
|
|
-MODEL_PATH=/root/joe/recommend-emr-dataprocess/rov/model
|
|
|
|
-PREDICT_PATH=/root/zhaohp/recommend-emr-dataprocess/predict
|
|
|
|
|
|
+# 模型数据路径
|
|
|
|
+MODEL_PATH=/root/joe/recommend-emr-dataprocess/model
|
|
|
|
+# 预测路径
|
|
|
|
+PREDICT_PATH=/root/joe/recommend-emr-dataprocess/predict
|
|
|
|
+# 历史线上正在使用的模型数据路径
|
|
LAST_MODEL_HOME=/root/joe/model_online
|
|
LAST_MODEL_HOME=/root/joe/model_online
|
|
|
|
+# 模型数据文件前缀
|
|
model_name=akaqjl8
|
|
model_name=akaqjl8
|
|
|
|
+# fm模型
|
|
FM_HOME=/root/sunmingze/alphaFM/bin
|
|
FM_HOME=/root/sunmingze/alphaFM/bin
|
|
|
|
+# hadoop
|
|
HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
|
|
HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
|
|
|
|
|
|
|
|
|
|
-## 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
|
|
|
|
-#online_model=${MODEL_PATH}/model_online.txt
|
|
|
|
-#$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${online_model} -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
|
|
|
|
-#$HADOOP fs -text ${bucketDataPath}/${today}/* | /root/sunmingze/alphaFM/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 0 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
|
|
|
|
|
|
+
|
|
|
|
+# 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
|
|
|
|
+#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
|
|
|
|
+#$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
|
|
|
|
+#$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/bin/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
|
|
#
|
|
#
|
|
-## 1 对比auc数据判断是否更新线上模型
|
|
|
|
#online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
|
|
#online_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_online.txt | /root/sunmingze/AUC/AUC`
|
|
-#new_auc=`cat ${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
|
|
|
|
-#if [ "$online_auc" \< "$new_auc" ]; then
|
|
|
|
-# echo "推荐新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
|
-# /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
|
-# # todo 模型格式转换
|
|
|
|
-#
|
|
|
|
-# # todo 模型文件上传OSS
|
|
|
|
-#
|
|
|
|
-# # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
|
|
|
|
-#else
|
|
|
|
-# echo "推荐新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
|
-# /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
|
-## exit 1
|
|
|
|
-#fi
|
|
|
|
-#
|
|
|
|
-#
|
|
|
|
-## 2 判断上游表是否生产完成,最长等待到12点
|
|
|
|
-## shellcheck disable=SC2039
|
|
|
|
-#source /root/anaconda3/bin/activate py37
|
|
|
|
-## shellcheck disable=SC2154
|
|
|
|
-#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
|
|
|
|
-#while true; do
|
|
|
|
-# python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
|
|
|
|
-# echo "python 返回值:${python_return_code}"
|
|
|
|
-# if [ $python_return_code -eq 0 ]; then
|
|
|
|
-# echo "Python程序返回0,校验存在数据,退出循环。"
|
|
|
|
-# break
|
|
|
|
-# fi
|
|
|
|
-# echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
|
|
|
|
-# sleep 300
|
|
|
|
-# current_hour=$(date +%H)
|
|
|
|
-# current_minute=$(date +%M)
|
|
|
|
-# # shellcheck disable=SC2039
|
|
|
|
-# if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
|
-# echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
|
|
|
|
-# exit 1
|
|
|
|
-# fi
|
|
|
|
-#done
|
|
|
|
-#
|
|
|
|
-## 3 生产原始数据
|
|
|
|
-#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
|
|
|
|
-#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
-#--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
|
|
|
|
-#--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
|
|
|
|
-#../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
-#tablePart:64 repartition:32 \
|
|
|
|
-#beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
|
|
|
|
-#savePath:${originDataPath} \
|
|
|
|
-#table:${table}
|
|
|
|
#if [ $? -ne 0 ]; then
|
|
#if [ $? -ne 0 ]; then
|
|
-# echo "Spark原始样本生产任务执行失败"
|
|
|
|
|
|
+# echo "推荐线上模型AUC计算失败"
|
|
|
|
+## /root/anaconda3/bin/python ad/ad_monitor_util.py "线上模型AUC计算失败"
|
|
# exit 1
|
|
# exit 1
|
|
-#else
|
|
|
|
-# echo "spark原始样本生产执行成功"
|
|
|
|
#fi
|
|
#fi
|
|
#
|
|
#
|
|
-#
|
|
|
|
-## 4 特征值拼接
|
|
|
|
-#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
|
|
|
|
-#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
-#--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
|
|
|
|
-#--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
|
|
|
|
-#../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
-#readPath:${originDataPath} \
|
|
|
|
-#savePath:${valueDataPath} \
|
|
|
|
-#beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
|
|
|
+#new_auc=`${PREDICT_PATH}/${model_name}_${today}_new.txt | /root/sunmingze/AUC/AUC`
|
|
#if [ $? -ne 0 ]; then
|
|
#if [ $? -ne 0 ]; then
|
|
-# echo "Spark特征值拼接处理任务执行失败"
|
|
|
|
|
|
+# echo "推荐新模型AUC计算失败"
|
|
|
|
+## /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型AUC计算失败"
|
|
# exit 1
|
|
# exit 1
|
|
-#else
|
|
|
|
-# echo "spark特征值拼接处理执行成功"
|
|
|
|
#fi
|
|
#fi
|
|
#
|
|
#
|
|
-## 5 特征分桶
|
|
|
|
-#echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
|
|
|
|
-#/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
-#--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
|
|
|
|
-#--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
|
-#../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
-#readPath:${valueDataPath} \
|
|
|
|
-#savePath:${bucketDataPath} \
|
|
|
|
-#beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
|
-#if [ $? -ne 0 ]; then
|
|
|
|
-# echo "Spark特征分桶处理任务执行失败"
|
|
|
|
-# exit 1
|
|
|
|
-#else
|
|
|
|
-# echo "spark特征分桶处理执行成功"
|
|
|
|
-#fi
|
|
|
|
#
|
|
#
|
|
-## 6 模型训练
|
|
|
|
-#$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
|
|
|
|
-#if [ $? -ne 0 ]; then
|
|
|
|
-# echo "模型训练失败"
|
|
|
|
-# /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
|
|
|
|
-# exit 1
|
|
|
|
|
|
+## 1 对比auc数据判断是否更新线上模型
|
|
|
|
+#if [ "$online_auc" \< "$new_auc" ]; then
|
|
|
|
+# echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
|
+# # todo 模型格式转换
|
|
|
|
+#
|
|
|
|
+# # todo 模型文件上传OSS
|
|
|
|
+#
|
|
|
|
+# # todo 本地保存最新的线上使用的模型,用于下一次的AUC验证
|
|
|
|
+## /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
|
+#else
|
|
|
|
+# echo "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
|
|
+## /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型不如线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
|
|
#fi
|
|
#fi
|
|
|
|
|
|
-$HADOOP fs -text ${bucketDataPath}/20240703/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_20240703.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
|
|
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# 2 判断上游表是否生产完成,最长等待到12点
|
|
|
|
+# shellcheck disable=SC2154
|
|
|
|
+echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
|
|
|
|
+while true; do
|
|
|
|
+ python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
|
|
|
|
+ echo "python 返回值:${python_return_code}"
|
|
|
|
+ if [ $python_return_code -eq 0 ]; then
|
|
|
|
+ echo "Python程序返回0,校验存在数据,退出循环。"
|
|
|
|
+ break
|
|
|
|
+ fi
|
|
|
|
+ echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
|
|
|
|
+ sleep 300
|
|
|
|
+ current_hour=$(date +%H)
|
|
|
|
+ current_minute=$(date +%M)
|
|
|
|
+ # shellcheck disable=SC2039
|
|
|
|
+ if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
|
|
|
|
+ echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
|
|
|
|
+ exit 1
|
|
|
|
+ fi
|
|
|
|
+done
|
|
|
|
+
|
|
|
|
+# 3 生产原始数据
|
|
|
|
+echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
|
|
|
|
+/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
+--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
|
|
|
|
+--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
|
|
|
|
+../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
+tablePart:64 repartition:32 \
|
|
|
|
+beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
|
|
|
|
+savePath:${originDataPath} \
|
|
|
|
+table:${table}
|
|
|
|
+if [ $? -ne 0 ]; then
|
|
|
|
+ echo "Spark原始样本生产任务执行失败"
|
|
|
|
+ exit 1
|
|
|
|
+else
|
|
|
|
+ echo "spark原始样本生产执行成功"
|
|
|
|
+fi
|
|
|
|
+
|
|
|
|
+
|
|
|
|
+# 4 特征值拼接
|
|
|
|
+echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
|
|
|
|
+/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
+--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
|
|
|
|
+--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
|
|
|
|
+../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
+readPath:${originDataPath} \
|
|
|
|
+savePath:${valueDataPath} \
|
|
|
|
+beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
|
+if [ $? -ne 0 ]; then
|
|
|
|
+ echo "Spark特征值拼接处理任务执行失败"
|
|
|
|
+ exit 1
|
|
|
|
+else
|
|
|
|
+ echo "spark特征值拼接处理执行成功"
|
|
|
|
+fi
|
|
|
|
+
|
|
|
|
+# 5 特征分桶
|
|
|
|
+echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
|
|
|
|
+/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
|
|
|
|
+--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
|
|
|
|
+--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
|
|
|
|
+../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
|
|
|
|
+readPath:${valueDataPath} \
|
|
|
|
+savePath:${bucketDataPath} \
|
|
|
|
+beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
|
|
|
|
+if [ $? -ne 0 ]; then
|
|
|
|
+ echo "Spark特征分桶处理任务执行失败"
|
|
|
|
+ exit 1
|
|
|
|
+else
|
|
|
|
+ echo "spark特征分桶处理执行成功"
|
|
|
|
+fi
|
|
|
|
+
|
|
|
|
+# 6 模型训练
|
|
|
|
+echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------开始模型训练"
|
|
|
|
+$HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
|
|
if [ $? -ne 0 ]; then
|
|
if [ $? -ne 0 ]; then
|
|
echo "模型训练失败"
|
|
echo "模型训练失败"
|
|
- /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
|
|
|
|
|
|
+# /root/anaconda3/bin/python ad/ad_monitor_util.py "推荐模型训练失败"
|
|
exit 1
|
|
exit 1
|
|
fi
|
|
fi
|
|
|
|
|
|
|
|
+echo "$(date +%Y-%m-%d_%H-%M-%S)----------step6------------模型训练完成:${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt"
|
|
|
|
+
|
|
|
|
|
|
|
|
|
|
|
|
|