|
@@ -5,17 +5,14 @@ import com.alibaba.fastjson.JSON
|
|
import com.aliyun.odps.TableSchema
|
|
import com.aliyun.odps.TableSchema
|
|
import com.aliyun.odps.data.Record
|
|
import com.aliyun.odps.data.Record
|
|
import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils, env}
|
|
import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils, env}
|
|
-import examples.extractor.{RankExtractorItemFeatureV2, RankExtractorUserFeatureV2}
|
|
|
|
import org.apache.hadoop.io.compress.GzipCodec
|
|
import org.apache.hadoop.io.compress.GzipCodec
|
|
import org.apache.spark.sql.SparkSession
|
|
import org.apache.spark.sql.SparkSession
|
|
-
|
|
|
|
-import java.util
|
|
|
|
-import java.util.{HashMap, Map}
|
|
|
|
import scala.collection.JavaConversions._
|
|
import scala.collection.JavaConversions._
|
|
-import scala.collection.mutable
|
|
|
|
import examples.extractor.RankExtractorFeature_20240530
|
|
import examples.extractor.RankExtractorFeature_20240530
|
|
|
|
+import org.xm.Similarity
|
|
|
|
+import scala.collection.mutable.ArrayBuffer
|
|
/*
|
|
/*
|
|
- 所有获取不到的特征,给默认值0.
|
|
|
|
|
|
+ 20240608 提取特征
|
|
*/
|
|
*/
|
|
|
|
|
|
object makedata_13_originData_20240529 {
|
|
object makedata_13_originData_20240529 {
|
|
@@ -35,7 +32,7 @@ object makedata_13_originData_20240529 {
|
|
val savePath = param.getOrElse("savePath", "/dw/recommend/model/13_sample_data/")
|
|
val savePath = param.getOrElse("savePath", "/dw/recommend/model/13_sample_data/")
|
|
val project = param.getOrElse("project", "loghubods")
|
|
val project = param.getOrElse("project", "loghubods")
|
|
val table = param.getOrElse("table", "XXXX")
|
|
val table = param.getOrElse("table", "XXXX")
|
|
-
|
|
|
|
|
|
+ val repartition = param.getOrElse("repartition", "20").toInt
|
|
|
|
|
|
// 2 读取odps+表信息
|
|
// 2 读取odps+表信息
|
|
val odpsOps = env.getODPS(sc)
|
|
val odpsOps = env.getODPS(sc)
|
|
@@ -53,6 +50,9 @@ object makedata_13_originData_20240529 {
|
|
transfer = func,
|
|
transfer = func,
|
|
numPartition = tablePart)
|
|
numPartition = tablePart)
|
|
.map(record => {
|
|
.map(record => {
|
|
|
|
+
|
|
|
|
+ val featureMap = new JSONObject()
|
|
|
|
+
|
|
// a 视频特征
|
|
// a 视频特征
|
|
val b1: JSONObject = if (record.isNull("b1_feature")) new JSONObject() else
|
|
val b1: JSONObject = if (record.isNull("b1_feature")) new JSONObject() else
|
|
JSON.parseObject(record.getString("b1_feature"))
|
|
JSON.parseObject(record.getString("b1_feature"))
|
|
@@ -84,7 +84,7 @@ object makedata_13_originData_20240529 {
|
|
val b19: JSONObject = if (record.isNull("b19_feature")) new JSONObject() else
|
|
val b19: JSONObject = if (record.isNull("b19_feature")) new JSONObject() else
|
|
JSON.parseObject(record.getString("b19_feature"))
|
|
JSON.parseObject(record.getString("b19_feature"))
|
|
|
|
|
|
- val featureMap = new util.HashMap[String, Double]()
|
|
|
|
|
|
+
|
|
val origin_data = List(
|
|
val origin_data = List(
|
|
(b1, b2, b3, "b123"), (b1, b6, b7, "b167"),
|
|
(b1, b2, b3, "b123"), (b1, b6, b7, "b167"),
|
|
(b8, b9, b10, "b8910"), (b11, b12, b13, "b111213"),
|
|
(b8, b9, b10, "b8910"), (b11, b12, b13, "b111213"),
|
|
@@ -117,21 +117,79 @@ object makedata_13_originData_20240529 {
|
|
|
|
|
|
val c1: JSONObject = if (record.isNull("c1_feature")) new JSONObject() else
|
|
val c1: JSONObject = if (record.isNull("c1_feature")) new JSONObject() else
|
|
JSON.parseObject(record.getString("c1_feature"))
|
|
JSON.parseObject(record.getString("c1_feature"))
|
|
- featureMap.put("playcnt_6h", if (c1.containsKey("playcnt_6h")) c1.getIntValue("playcnt_6h").toDouble else 0D)
|
|
|
|
- featureMap.put("playcnt_1d", if (c1.containsKey("playcnt_1d")) c1.getIntValue("playcnt_1d").toDouble else 0D)
|
|
|
|
- featureMap.put("playcnt_3d", if (c1.containsKey("playcnt_3d")) c1.getIntValue("playcnt_3d").toDouble else 0D)
|
|
|
|
- featureMap.put("playcnt_7d", if (c1.containsKey("playcnt_7d")) c1.getIntValue("playcnt_7d").toDouble else 0D)
|
|
|
|
|
|
+ if (c1.nonEmpty){
|
|
|
|
+ featureMap.put("playcnt_6h", if (c1.containsKey("playcnt_6h")) c1.getIntValue("playcnt_6h").toDouble else 0D)
|
|
|
|
+ featureMap.put("playcnt_1d", if (c1.containsKey("playcnt_1d")) c1.getIntValue("playcnt_1d").toDouble else 0D)
|
|
|
|
+ featureMap.put("playcnt_3d", if (c1.containsKey("playcnt_3d")) c1.getIntValue("playcnt_3d").toDouble else 0D)
|
|
|
|
+ featureMap.put("playcnt_7d", if (c1.containsKey("playcnt_7d")) c1.getIntValue("playcnt_7d").toDouble else 0D)
|
|
|
|
+ }
|
|
|
|
+ val c2: JSONObject = if (record.isNull("c2_feature")) new JSONObject() else
|
|
|
|
+ JSON.parseObject(record.getString("c2_feature"))
|
|
|
|
+ if (c2.nonEmpty){
|
|
|
|
+ featureMap.put("share_pv_12h", if (c2.containsKey("share_pv_12h")) c2.getIntValue("share_pv_12h").toDouble else 0D)
|
|
|
|
+ featureMap.put("share_pv_1d", if (c2.containsKey("share_pv_1d")) c2.getIntValue("share_pv_1d").toDouble else 0D)
|
|
|
|
+ featureMap.put("share_pv_3d", if (c2.containsKey("share_pv_3d")) c2.getIntValue("share_pv_3d").toDouble else 0D)
|
|
|
|
+ featureMap.put("share_pv_7d", if (c2.containsKey("share_pv_7d")) c2.getIntValue("share_pv_7d").toDouble else 0D)
|
|
|
|
+ featureMap.put("return_uv_12h", if (c2.containsKey("return_uv_12h")) c2.getIntValue("return_uv_12h").toDouble else 0D)
|
|
|
|
+ featureMap.put("return_uv_1d", if (c2.containsKey("return_uv_1d")) c2.getIntValue("return_uv_1d").toDouble else 0D)
|
|
|
|
+ featureMap.put("return_uv_3d", if (c2.containsKey("return_uv_3d")) c2.getIntValue("return_uv_3d").toDouble else 0D)
|
|
|
|
+ featureMap.put("return_uv_7d", if (c2.containsKey("return_uv_7d")) c2.getIntValue("return_uv_7d").toDouble else 0D)
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ val title = if (video_info.containsKey("title")) video_info.getString("title") else ""
|
|
|
|
+ if (!title.equals("")){
|
|
|
|
+ for (key_feature <- List("c3_feature", "c4_feature", "c5_feature", "c6_feature", "c7_feature")){
|
|
|
|
+ val c34567: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
|
|
|
|
+ JSON.parseObject(record.getString(key_feature))
|
|
|
|
+ for (key_time <- List("tags_1d", "tags_3d", "tags_7d")) {
|
|
|
|
+ val tags = if (c34567.containsKey(key_time)) c34567.getString(key_time) else ""
|
|
|
|
+ if (!tags.equals("")){
|
|
|
|
+ val (f1, f2, f3, f4) = funcC34567ForTags(tags, title)
|
|
|
|
+ featureMap.put(key_feature + "_" + key_time + "_matchnum", f1)
|
|
|
|
+ featureMap.put(key_feature + "_" + key_time + "_maxscore", f3)
|
|
|
|
+ featureMap.put(key_feature + "_" + key_time + "_avgscore", f4)
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+
|
|
|
|
+ val vid = if (record.isNull("vid")) "" else record.getString("vid")
|
|
|
|
+ if (!vid.equals("")){
|
|
|
|
+ for (key_feature <- List("c8_feature", "c9_feature")){
|
|
|
|
+ val c89: JSONObject = if (record.isNull(key_feature)) new JSONObject() else
|
|
|
|
+ JSON.parseObject(record.getString(key_feature))
|
|
|
|
+ for (key_action <- List("share", "return")){
|
|
|
|
+ val cfListStr = if (c89.containsKey(key_action)) c89.getString(key_action) else ""
|
|
|
|
+ if (!cfListStr.equals("")){
|
|
|
|
+ val cfMap = cfListStr.split(",").map(r =>{
|
|
|
|
+ val rList = r.split(":")
|
|
|
|
+ (rList(0), (rList(1), rList(2), rList(3)))
|
|
|
|
+ }).toMap
|
|
|
|
+ if (cfMap.contains(vid)){
|
|
|
|
+ val (score, num, rank) = cfMap(vid)
|
|
|
|
+ featureMap.put(key_feature + "_" + key_action + "_score", score.toDouble)
|
|
|
|
+ featureMap.put(key_feature + "_" + key_action + "_num", num.toDouble)
|
|
|
|
+ featureMap.put(key_feature + "_" + key_action + "_rank", 1.0 / rank.toDouble)
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
+ }
|
|
|
|
|
|
val d1: JSONObject = if (record.isNull("d1_feature")) new JSONObject() else
|
|
val d1: JSONObject = if (record.isNull("d1_feature")) new JSONObject() else
|
|
JSON.parseObject(record.getString("d1_feature"))
|
|
JSON.parseObject(record.getString("d1_feature"))
|
|
- featureMap.put("return_n", if (c1.containsKey("return_n")) c1.getString("return_n").toDouble else 0D)
|
|
|
|
- featureMap.put("rovn", if (c1.containsKey("rovn")) c1.getString("rovn").toDouble else 0D)
|
|
|
|
|
|
+ if (d1.nonEmpty){
|
|
|
|
+ featureMap.put("d1_exp", if (d1.containsKey("exp")) d1.getString("exp").toDouble else 0D)
|
|
|
|
+ featureMap.put("d1_return_n", if (d1.containsKey("return_n")) d1.getString("return_n").toDouble else 0D)
|
|
|
|
+ featureMap.put("d1_rovn", if (d1.containsKey("rovn")) d1.getString("rovn").toDouble else 0D)
|
|
|
|
+ }
|
|
|
|
|
|
|
|
|
|
/*
|
|
/*
|
|
视频:
|
|
视频:
|
|
视频时长、比特率
|
|
视频时长、比特率
|
|
|
|
|
|
|
|
+ 视频:
|
|
曝光使用pv 分享使用pv 回流使用uv --> 1h 2h 3h 4h 12h 1d 3d 7d
|
|
曝光使用pv 分享使用pv 回流使用uv --> 1h 2h 3h 4h 12h 1d 3d 7d
|
|
STR log(share) ROV log(return) ROV*log(return)
|
|
STR log(share) ROV log(return) ROV*log(return)
|
|
40个特征组合
|
|
40个特征组合
|
|
@@ -141,8 +199,10 @@ object makedata_13_originData_20240529 {
|
|
人:
|
|
人:
|
|
播放次数 --> 6h 1d 3d 7d --> 4个
|
|
播放次数 --> 6h 1d 3d 7d --> 4个
|
|
带回来的分享pv 回流uv --> 12h 1d 3d 7d --> 8个
|
|
带回来的分享pv 回流uv --> 12h 1d 3d 7d --> 8个
|
|
- 播放点 回流点 --> 2h 1d 3d --> 匹配数量 匹配词 语义最高相似度分 语义平均相似度分
|
|
|
|
- 分享点 曝光点 (回流点) --> 1d 3d 7d 14d --> 匹配数量 匹配词 语义最高相似度分 语义平均相似度分
|
|
|
|
|
|
+ 人+vid-title:
|
|
|
|
+ 播放点/回流点/分享点/累积分享/累积回流 --> 1d 3d 7d --> 匹配数量 匹配词 语义最高相似度分 语义平均相似度分 --> 60个
|
|
|
|
+ 人+vid-cf
|
|
|
|
+ 基于分享行为/基于回流行为 --> “分享cf”+”回流点击cf“ 相似分 相似数量 相似rank的倒数 --> 12个
|
|
|
|
|
|
头部视频:
|
|
头部视频:
|
|
曝光 回流 ROVn 3个特征
|
|
曝光 回流 ROVn 3个特征
|
|
@@ -152,50 +212,39 @@ object makedata_13_originData_20240529 {
|
|
*/
|
|
*/
|
|
|
|
|
|
|
|
|
|
- // b
|
|
|
|
-
|
|
|
|
-
|
|
|
|
-
|
|
|
|
|
|
|
|
//4 处理label信息。
|
|
//4 处理label信息。
|
|
- val labels = Set(
|
|
|
|
- "pagesource", "recommend_page_type", "pagesource_change",
|
|
|
|
- "abcode",
|
|
|
|
- "is_play", "playtime",
|
|
|
|
- "is_share", "share_cnt_pv", "share_ts_list",
|
|
|
|
- "is_return", "return_cnt_pv", "return_cnt_uv", "return_mid_ts_list"
|
|
|
|
- )
|
|
|
|
- val labelNew = new JSONObject
|
|
|
|
- val labelMap = getFeatureFromSet(labels, record)
|
|
|
|
- labels.foreach(r => {
|
|
|
|
- if (labelMap.containsKey(r)) {
|
|
|
|
- labelNew.put(r, labelMap(r))
|
|
|
|
|
|
+ val labels = new JSONObject
|
|
|
|
+ for (labelKey <- List(
|
|
|
|
+ "is_play", "is_share", "is_return", "noself_is_return", "return_uv", "noself_return_uv", "total_return_uv",
|
|
|
|
+ "share_pv", "total_share_uv"
|
|
|
|
+ )){
|
|
|
|
+ if (!record.isNull(labelKey)){
|
|
|
|
+ labels.put(labelKey, record.getString(labelKey))
|
|
}
|
|
}
|
|
- })
|
|
|
|
|
|
+ }
|
|
//5 处理log key表头。
|
|
//5 处理log key表头。
|
|
- val mid = record.getString("mid")
|
|
|
|
- val videoid = record.getString("videoid")
|
|
|
|
- val logtimestamp = record.getString("logtimestamp")
|
|
|
|
val apptype = record.getString("apptype")
|
|
val apptype = record.getString("apptype")
|
|
- val pagesource_change = record.getString("pagesource_change")
|
|
|
|
|
|
+ val pagesource = record.getString("pagesource")
|
|
|
|
+ val mid = record.getString("mid")
|
|
|
|
+ // vid 已经提取了
|
|
|
|
+ val ts = record.getString("ts")
|
|
val abcode = record.getString("abcode")
|
|
val abcode = record.getString("abcode")
|
|
- val video_recommend = if (!record.isNull("video_recommend")) record.getString("video_recommend") else "111"
|
|
|
|
-
|
|
|
|
- val logKey = (mid, videoid, logtimestamp, apptype, pagesource_change, abcode, video_recommend).productIterator.mkString(":")
|
|
|
|
- val labelKey = labelNew.toString()
|
|
|
|
- val featureKey = "".toString()
|
|
|
|
|
|
+ val level = if (record.isNull("level")) "0" else record.getString("level")
|
|
|
|
+ val logKey = (apptype, pagesource, mid, vid, ts, abcode, level).productIterator.mkString(",")
|
|
|
|
+ val labelKey = labels.toString()
|
|
|
|
+ val featureKey = featureMap.toString()
|
|
//6 拼接数据,保存。
|
|
//6 拼接数据,保存。
|
|
logKey + "\t" + labelKey + "\t" + featureKey
|
|
logKey + "\t" + labelKey + "\t" + featureKey
|
|
|
|
|
|
})
|
|
})
|
|
|
|
|
|
-
|
|
|
|
// 4 保存数据到hdfs
|
|
// 4 保存数据到hdfs
|
|
val hdfsPath = savePath + "/" + partition
|
|
val hdfsPath = savePath + "/" + partition
|
|
if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")){
|
|
if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")){
|
|
println("删除路径并开始数据写入:" + hdfsPath)
|
|
println("删除路径并开始数据写入:" + hdfsPath)
|
|
MyHdfsUtils.delete_hdfs_path(hdfsPath)
|
|
MyHdfsUtils.delete_hdfs_path(hdfsPath)
|
|
- odpsData.saveAsTextFile(hdfsPath, classOf[GzipCodec])
|
|
|
|
|
|
+ odpsData.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
|
|
}else{
|
|
}else{
|
|
println("路径不合法,无法写入:" + hdfsPath)
|
|
println("路径不合法,无法写入:" + hdfsPath)
|
|
}
|
|
}
|
|
@@ -205,18 +254,23 @@ object makedata_13_originData_20240529 {
|
|
def func(record: Record, schema: TableSchema): Record = {
|
|
def func(record: Record, schema: TableSchema): Record = {
|
|
record
|
|
record
|
|
}
|
|
}
|
|
-
|
|
|
|
- def getFeatureFromSet(set: Set[String], record: Record): mutable.HashMap[String, String] = {
|
|
|
|
- val result = mutable.HashMap[String, String]()
|
|
|
|
- set.foreach(r =>{
|
|
|
|
- if (!record.isNull(r)){
|
|
|
|
- try{
|
|
|
|
- result.put(r, record.getString(r))
|
|
|
|
- }catch {
|
|
|
|
- case _ => result.put(r, String.valueOf(record.getBigint(r)))
|
|
|
|
- }
|
|
|
|
|
|
+ def funcC34567ForTags(tags: String, title: String): Tuple4[Double, String, Double, Double] = {
|
|
|
|
+ // 匹配数量 匹配词 语义最高相似度分 语义平均相似度分
|
|
|
|
+ val tagsList = tags.split(",")
|
|
|
|
+ var d1 = 0.0
|
|
|
|
+ val d2 = ArrayBuffer()
|
|
|
|
+ var d3 = 0.0
|
|
|
|
+ var d4 = 0.0
|
|
|
|
+ for (tag <- tagsList){
|
|
|
|
+ if (title.contains(tag)){
|
|
|
|
+ d1 = d1 + 1.0
|
|
|
|
+ d2.add(tag)
|
|
}
|
|
}
|
|
- })
|
|
|
|
- result
|
|
|
|
|
|
+ val score = Similarity.conceptSimilarity(tag, title)
|
|
|
|
+ d3 = if (score > d3) score else d3
|
|
|
|
+ d4 = d4 + score
|
|
|
|
+ }
|
|
|
|
+ d4 = if (tagsList.nonEmpty) d4 / tagsList.size else d4
|
|
|
|
+ (d1, d2.mkString(","), d3, d4)
|
|
}
|
|
}
|
|
}
|
|
}
|