|
@@ -0,0 +1,83 @@
|
|
|
+current_data="20" # train end date
|
|
|
+today_early_1=
|
|
|
+train_data_days=14
|
|
|
+model_name=model_xgb_dev_20250623
|
|
|
+feature_file=20240703_ad_feature_name.txt
|
|
|
+BUCKET_FEATURE_PATH=/dw/recommend/model/dev_20250623/33_ad_train_data
|
|
|
+model_ver=dev_20250623
|
|
|
+MODEL_PATH=/root/yuehailiang/xgboost-dev/
|
|
|
+
|
|
|
+sh_path=$(cd $(dirname $0); pwd)
|
|
|
+source ${sh_path}/00_common.sh
|
|
|
+
|
|
|
+init() {
|
|
|
+ set +x
|
|
|
+ declare -a date_keys=()
|
|
|
+ local count=1
|
|
|
+ # 循环获取前 n 天的非节日日期
|
|
|
+ while [[ ${count} -le $train_data_days ]]; do
|
|
|
+ date_key=$(date -d "${current_data}" +%Y%m%d)
|
|
|
+ # 判断是否是节日,并拼接训练数据路径
|
|
|
+ if [ $(is_not_holidays ${date_key}) -eq 1 ]; then
|
|
|
+
|
|
|
+ # 将 date_key 放入数组
|
|
|
+ date_keys+=("${date_key}")
|
|
|
+
|
|
|
+ if [[ -z ${train_data_path} ]]; then
|
|
|
+ train_data_path="${BUCKET_FEATURE_PATH}/${date_key}"
|
|
|
+ else
|
|
|
+ train_data_path="${BUCKET_FEATURE_PATH}/${date_key},${train_data_path}"
|
|
|
+ fi
|
|
|
+ count=$((count + 1))
|
|
|
+ else
|
|
|
+ echo "日期: ${date_key}是节日,跳过"
|
|
|
+ fi
|
|
|
+ current_data=$(date -d "${current_data} -1 day" +%Y%m%d)
|
|
|
+
|
|
|
+ done
|
|
|
+
|
|
|
+ last_index=$((${#date_keys[@]} - 1))
|
|
|
+ train_first_day=${date_keys[$last_index]}
|
|
|
+ train_last_day=${date_keys[0]}
|
|
|
+
|
|
|
+ model_save_path=${MODEL_PATH}/${model_name}_${train_first_day: -4}_${train_last_day: -4}
|
|
|
+ predict_date_path=${BUCKET_FEATURE_PATH}/${today_early_1}
|
|
|
+ new_model_predict_result_path=${PREDICT_RESULT_SAVE_PATH}/${today_early_1}_${model_ver}_${train_first_day: -4}_${train_last_day: -4}
|
|
|
+
|
|
|
+ echo "init param train_data_path: ${train_data_path}"
|
|
|
+ echo "init param predict_date_path: ${predict_date_path}"
|
|
|
+ echo "init param new_model_predict_result_path: ${new_model_predict_result_path}"
|
|
|
+ echo "init param model_save_path: ${model_save_path}"
|
|
|
+ echo "init param feature_file: ${feature_file}"
|
|
|
+ echo "init param model_name: ${model_name}"
|
|
|
+}
|
|
|
+
|
|
|
+xgb_train() {
|
|
|
+ local step_start_time=$(date +%s)
|
|
|
+
|
|
|
+ /opt/apps/SPARK3/spark-3.3.1-hadoop3.2-1.0.5/bin/spark-class org.apache.spark.deploy.SparkSubmit \
|
|
|
+ --class com.tzld.piaoquan.recommend.model.train_01_xgb_ad_20250104 \
|
|
|
+ --master yarn --driver-memory 6G --executor-memory 10G --executor-cores 2 --num-executors 11 \
|
|
|
+ --conf spark.yarn.executor.memoryoverhead=2048 \
|
|
|
+ --conf spark.shuffle.service.enabled=true \
|
|
|
+ --conf spark.shuffle.service.port=7337 \
|
|
|
+ --conf spark.shuffle.consolidateFiles=true \
|
|
|
+ --conf spark.shuffle.manager=sort \
|
|
|
+ --conf spark.storage.memoryFraction=0.4 \
|
|
|
+ --conf spark.shuffle.memoryFraction=0.5 \
|
|
|
+ --conf spark.default.parallelism=200 \
|
|
|
+ /root/yuehailiang/recommend-model/recommend-model-produce/target/recommend-model-produce-jar-with-dependencies.jar \
|
|
|
+ featureFile:20240703_ad_feature_name.txt \
|
|
|
+ trainPath:${train_data_path} \
|
|
|
+ testPath:${predict_date_path} \
|
|
|
+ savePath:${new_model_predict_result_path} \
|
|
|
+ modelPath:${model_save_path} \
|
|
|
+ eta:0.01 gamma:0.0 max_depth:5 num_round:1000 num_worker:10 repartition:20 \
|
|
|
+ negSampleRate:0.04
|
|
|
+
|
|
|
+ #local return_code=$?
|
|
|
+ #check_run_status ${return_code} ${step_start_time} "XGB模型训练任务" "XGB模型训练失败"
|
|
|
+}
|
|
|
+
|
|
|
+init
|
|
|
+xgb_train
|