|  | @@ -0,0 +1,194 @@
 | 
	
		
			
				|  |  | +package com.aliyun.odps.spark.examples.makedata_recsys_r_rate
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import com.alibaba.fastjson.JSON
 | 
	
		
			
				|  |  | +import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils}
 | 
	
		
			
				|  |  | +import examples.extractor.ExtractorUtils
 | 
	
		
			
				|  |  | +import org.apache.hadoop.io.compress.GzipCodec
 | 
	
		
			
				|  |  | +import org.apache.spark.sql.SparkSession
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import scala.collection.JavaConversions._
 | 
	
		
			
				|  |  | +import scala.collection.mutable.ArrayBuffer
 | 
	
		
			
				|  |  | +import scala.io.Source
 | 
	
		
			
				|  |  | +import scala.util.Random
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +object makedata_recsys_71_nor_sample_20250109 {
 | 
	
		
			
				|  |  | +  def main(args: Array[String]): Unit = {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // 1 读取参数
 | 
	
		
			
				|  |  | +    val param = ParamUtils.parseArgs(args)
 | 
	
		
			
				|  |  | +    val readPath = param.getOrElse("readPath", "/dw/recommend/model/71_origin_data/")
 | 
	
		
			
				|  |  | +    val beginStr = param.getOrElse("beginStr", "20250103")
 | 
	
		
			
				|  |  | +    val endStr = param.getOrElse("endStr", "20250103")
 | 
	
		
			
				|  |  | +    val whatApps = param.getOrElse("whatApps", "0,3,4,21,17").split(",").toSet
 | 
	
		
			
				|  |  | +    val whatLabel = param.getOrElse("whatLabel", "return_1_uv")
 | 
	
		
			
				|  |  | +    val fuSampleRate = param.getOrElse("fuSampleRate", "-1.0").toDouble
 | 
	
		
			
				|  |  | +    val notUseBucket = param.getOrElse("notUseBucket", "0").toInt
 | 
	
		
			
				|  |  | +    val featureNameFile = param.getOrElse("featureName", "20241209_recsys_nor_name.txt")
 | 
	
		
			
				|  |  | +    val featureBucketFile = param.getOrElse("featureBucket", "20241209_recsys_nor_bucket.txt")
 | 
	
		
			
				|  |  | +    val repartition = param.getOrElse("repartition", "100").toInt
 | 
	
		
			
				|  |  | +    val savePath = param.getOrElse("savePath", "/dw/recommend/model/71_recsys_nor_train_data/")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val spark = SparkSession
 | 
	
		
			
				|  |  | +      .builder()
 | 
	
		
			
				|  |  | +      .appName(this.getClass.getName)
 | 
	
		
			
				|  |  | +      .getOrCreate()
 | 
	
		
			
				|  |  | +    val sc = spark.sparkContext
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val loader = getClass.getClassLoader
 | 
	
		
			
				|  |  | +    val featureNameSet = loadUseFeatureNames(loader, featureNameFile)
 | 
	
		
			
				|  |  | +    val featureBucketMap = loadUseFeatureBuckets(loader, notUseBucket, featureBucketFile)
 | 
	
		
			
				|  |  | +    val bucketsMap_br = sc.broadcast(featureBucketMap)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val dateRange = MyDateUtils.getDateRange(beginStr, endStr)
 | 
	
		
			
				|  |  | +    for (date <- dateRange) {
 | 
	
		
			
				|  |  | +      println("开始执行:" + date)
 | 
	
		
			
				|  |  | +      val data = sc.textFile(readPath + "/" + date + "*").map(r => {
 | 
	
		
			
				|  |  | +          // logKey + "\t" + labelKey + "\t" + scoresMap + "\t" + featureKey
 | 
	
		
			
				|  |  | +          val rList = r.split("\t")
 | 
	
		
			
				|  |  | +          val logKey = rList(0)
 | 
	
		
			
				|  |  | +          val labelKey = rList(1)
 | 
	
		
			
				|  |  | +          val scoresMap = rList(2)
 | 
	
		
			
				|  |  | +          val featData = rList(3)
 | 
	
		
			
				|  |  | +          (logKey, labelKey, scoresMap, featData)
 | 
	
		
			
				|  |  | +        })
 | 
	
		
			
				|  |  | +        .filter {
 | 
	
		
			
				|  |  | +          case (logKey, labelKey, scoresMap, featData) =>
 | 
	
		
			
				|  |  | +            validData(logKey, whatApps)
 | 
	
		
			
				|  |  | +        }.filter {
 | 
	
		
			
				|  |  | +          case (logKey, labelKey, scoresMap, featData) =>
 | 
	
		
			
				|  |  | +            val label = parseLabel(labelKey, whatLabel).toDouble
 | 
	
		
			
				|  |  | +            label > 0 || new Random().nextDouble() <= fuSampleRate
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        .map {
 | 
	
		
			
				|  |  | +          case (logKey, labelKey, scoresMap, featData) =>
 | 
	
		
			
				|  |  | +            val label = parseLabel(labelKey, whatLabel).toDouble
 | 
	
		
			
				|  |  | +            val features = parseFeature(featData)
 | 
	
		
			
				|  |  | +            (logKey, label, scoresMap, features)
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        .mapPartitions(row => {
 | 
	
		
			
				|  |  | +          val result = new ArrayBuffer[String]()
 | 
	
		
			
				|  |  | +          val bucketsMap = bucketsMap_br.value
 | 
	
		
			
				|  |  | +          row.foreach {
 | 
	
		
			
				|  |  | +            case (logKey, label, scoresMap, features) =>
 | 
	
		
			
				|  |  | +              val featuresBucket = bucketFeature(featureNameSet, bucketsMap, features)
 | 
	
		
			
				|  |  | +              result.add(logKey + "\t" + label + "\t" + scoresMap + "\t" + featuresBucket.mkString("\t"))
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +          result.iterator
 | 
	
		
			
				|  |  | +        })
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // 4 保存数据到hdfs
 | 
	
		
			
				|  |  | +      val hdfsPath = savePath + "/" + date
 | 
	
		
			
				|  |  | +      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")) {
 | 
	
		
			
				|  |  | +        println("删除路径并开始数据写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +        MyHdfsUtils.delete_hdfs_path(hdfsPath)
 | 
	
		
			
				|  |  | +        data.repartition(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        println("路径不合法,无法写入:" + hdfsPath)
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def loadFileData(loader: ClassLoader, nameFile: String): String = {
 | 
	
		
			
				|  |  | +    val resourceUrlBucket = loader.getResource(nameFile)
 | 
	
		
			
				|  |  | +    val data =
 | 
	
		
			
				|  |  | +      if (resourceUrlBucket != null) {
 | 
	
		
			
				|  |  | +        val buckets = Source.fromURL(resourceUrlBucket).getLines().mkString("\n")
 | 
	
		
			
				|  |  | +        Source.fromURL(resourceUrlBucket).close()
 | 
	
		
			
				|  |  | +        buckets
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        ""
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    data
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def loadUseFeatureNames(loader: ClassLoader, nameFile: String): Set[String] = {
 | 
	
		
			
				|  |  | +    val names = loadFileData(loader, nameFile)
 | 
	
		
			
				|  |  | +    println(names)
 | 
	
		
			
				|  |  | +    names.split("\n")
 | 
	
		
			
				|  |  | +      .map(r => r.replace(" ", "").replaceAll("\n", ""))
 | 
	
		
			
				|  |  | +      .filter(r => r.nonEmpty)
 | 
	
		
			
				|  |  | +      .toSet
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def loadUseFeatureBuckets(loader: ClassLoader, notUseBucket: Int, nameFile: String): Map[String, (Double, Array[Double])] = {
 | 
	
		
			
				|  |  | +    if (notUseBucket > 0) {
 | 
	
		
			
				|  |  | +      return Map[String, (Double, Array[Double])]()
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    val buckets = loadFileData(loader, nameFile)
 | 
	
		
			
				|  |  | +    println(buckets)
 | 
	
		
			
				|  |  | +    buckets.split("\n")
 | 
	
		
			
				|  |  | +      .map(r => r.replace(" ", "").replaceAll("\n", ""))
 | 
	
		
			
				|  |  | +      .filter(r => r.nonEmpty)
 | 
	
		
			
				|  |  | +      .map(r => {
 | 
	
		
			
				|  |  | +        val rList = r.split("\t")
 | 
	
		
			
				|  |  | +        (rList(0), (rList(1).toDouble, rList(2).split(",").map(_.toDouble)))
 | 
	
		
			
				|  |  | +      }).toMap
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def recommendFlow(flowPool: String): Boolean = {
 | 
	
		
			
				|  |  | +    if (flowPool.isEmpty || flowPool.endsWith("#1")) {
 | 
	
		
			
				|  |  | +      return true
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    false
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def validData(logKey: String, whatApps: Set[String]): Boolean = {
 | 
	
		
			
				|  |  | +    // apptype, page, pagesource, recommendpagetype, flowpool, abcode, mid, vid, level, ts
 | 
	
		
			
				|  |  | +    val cells = logKey.split(",")
 | 
	
		
			
				|  |  | +    val apptype = cells(0)
 | 
	
		
			
				|  |  | +    val page = cells(1)
 | 
	
		
			
				|  |  | +    //val pagesource = cells(2)
 | 
	
		
			
				|  |  | +    val recommendpagetype = cells(3)
 | 
	
		
			
				|  |  | +    val flowpool = cells(4)
 | 
	
		
			
				|  |  | +    if (whatApps.contains(apptype)) {
 | 
	
		
			
				|  |  | +      if (recommendFlow(flowpool)) {
 | 
	
		
			
				|  |  | +        if (page.equals("详情后沉浸页")) {
 | 
	
		
			
				|  |  | +          return true
 | 
	
		
			
				|  |  | +        } else if (page.equals("回流后沉浸页&内页feed")) {
 | 
	
		
			
				|  |  | +          //if (recommendpagetype.endsWith("pages/user-videos-share-recommend-detail")) {
 | 
	
		
			
				|  |  | +          return true
 | 
	
		
			
				|  |  | +          //}
 | 
	
		
			
				|  |  | +        } else if (page.equals("首页feed")) {
 | 
	
		
			
				|  |  | +          return true
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    false
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def parseLabel(data: String, key: String, default: String = "0"): String = {
 | 
	
		
			
				|  |  | +    JSON.parseObject(data).getOrDefault(key, default).toString
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def parseFeature(data: String): scala.collection.mutable.Map[String, Double] = {
 | 
	
		
			
				|  |  | +    val features = scala.collection.mutable.Map[String, Double]()
 | 
	
		
			
				|  |  | +    if (data.nonEmpty) {
 | 
	
		
			
				|  |  | +      val obj = JSON.parseObject(data)
 | 
	
		
			
				|  |  | +      obj.foreach(r => {
 | 
	
		
			
				|  |  | +        features.put(r._1, obj.getDoubleValue(r._1))
 | 
	
		
			
				|  |  | +      })
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +    features
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  private def bucketFeature(nameSet: Set[String], bucketMap: Map[String, (Double, Array[Double])], features: scala.collection.mutable.Map[String, Double]): Iterable[String] = {
 | 
	
		
			
				|  |  | +    features.map {
 | 
	
		
			
				|  |  | +      case (name, score) =>
 | 
	
		
			
				|  |  | +        if (!nameSet.contains(name)) {
 | 
	
		
			
				|  |  | +          ""
 | 
	
		
			
				|  |  | +        } else {
 | 
	
		
			
				|  |  | +          if (score > 1E-8) {
 | 
	
		
			
				|  |  | +            if (bucketMap.contains(name)) {
 | 
	
		
			
				|  |  | +              val (bucketsNum, buckets) = bucketMap(name)
 | 
	
		
			
				|  |  | +              val scoreNew = 1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0)
 | 
	
		
			
				|  |  | +              name + ":" + scoreNew.toString
 | 
	
		
			
				|  |  | +            } else {
 | 
	
		
			
				|  |  | +              name + ":" + score.toString
 | 
	
		
			
				|  |  | +            }
 | 
	
		
			
				|  |  | +          } else {
 | 
	
		
			
				|  |  | +            ""
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +    }.filter(_.nonEmpty)
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 |