|  | @@ -0,0 +1,388 @@
 | 
											
												
													
														|  | 
 |  | +package com.aliyun.odps.spark.examples.makedata_ad
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +import com.alibaba.fastjson.{JSON, JSONObject}
 | 
											
												
													
														|  | 
 |  | +import com.aliyun.odps.TableSchema
 | 
											
												
													
														|  | 
 |  | +import com.aliyun.odps.data.Record
 | 
											
												
													
														|  | 
 |  | +import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, MyHdfsUtils, ParamUtils, env}
 | 
											
												
													
														|  | 
 |  | +import examples.extractor.RankExtractorFeature_20240530
 | 
											
												
													
														|  | 
 |  | +import org.apache.hadoop.io.compress.GzipCodec
 | 
											
												
													
														|  | 
 |  | +import org.apache.spark.sql.SparkSession
 | 
											
												
													
														|  | 
 |  | +import org.xm.Similarity
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +import scala.collection.JavaConversions._
 | 
											
												
													
														|  | 
 |  | +import scala.collection.mutable.ArrayBuffer
 | 
											
												
													
														|  | 
 |  | +/*
 | 
											
												
													
														|  | 
 |  | +   20240608 提取特征
 | 
											
												
													
														|  | 
 |  | + */
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +object makedata_ad_31_originData_20240620 {
 | 
											
												
													
														|  | 
 |  | +  def main(args: Array[String]): Unit = {
 | 
											
												
													
														|  | 
 |  | +    val spark = SparkSession
 | 
											
												
													
														|  | 
 |  | +      .builder()
 | 
											
												
													
														|  | 
 |  | +      .appName(this.getClass.getName)
 | 
											
												
													
														|  | 
 |  | +      .getOrCreate()
 | 
											
												
													
														|  | 
 |  | +    val sc = spark.sparkContext
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    // 1 读取参数
 | 
											
												
													
														|  | 
 |  | +    val param = ParamUtils.parseArgs(args)
 | 
											
												
													
														|  | 
 |  | +    val tablePart = param.getOrElse("tablePart", "64").toInt
 | 
											
												
													
														|  | 
 |  | +    val beginStr = param.getOrElse("beginStr", "2024062008")
 | 
											
												
													
														|  | 
 |  | +    val endStr = param.getOrElse("endStr", "2024062023")
 | 
											
												
													
														|  | 
 |  | +    val savePath = param.getOrElse("savePath", "/dw/recommend/model/31_ad_sample_data/")
 | 
											
												
													
														|  | 
 |  | +    val project = param.getOrElse("project", "loghubods")
 | 
											
												
													
														|  | 
 |  | +    val table = param.getOrElse("table", "alg_recsys_ad_sample_all")
 | 
											
												
													
														|  | 
 |  | +    val repartition = param.getOrElse("repartition", "100").toInt
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    // 2 读取odps+表信息
 | 
											
												
													
														|  | 
 |  | +    val odpsOps = env.getODPS(sc)
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +    // 3 循环执行数据生产
 | 
											
												
													
														|  | 
 |  | +    val timeRange = MyDateUtils.getDateHourRange(beginStr, endStr)
 | 
											
												
													
														|  | 
 |  | +    for (dt_hh <- timeRange) {
 | 
											
												
													
														|  | 
 |  | +      val dt = dt_hh.substring(0, 8)
 | 
											
												
													
														|  | 
 |  | +      val hh = dt_hh.substring(8, 10)
 | 
											
												
													
														|  | 
 |  | +      val partition = s"dt=$dt,hh=$hh"
 | 
											
												
													
														|  | 
 |  | +      println("开始执行partiton:" + partition)
 | 
											
												
													
														|  | 
 |  | +      val odpsData = odpsOps.readTable(project = project,
 | 
											
												
													
														|  | 
 |  | +        table = table,
 | 
											
												
													
														|  | 
 |  | +        partition = partition,
 | 
											
												
													
														|  | 
 |  | +        transfer = func,
 | 
											
												
													
														|  | 
 |  | +        numPartition = tablePart)
 | 
											
												
													
														|  | 
 |  | +        .map(record => {
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val ts = record.getString("ts").toInt
 | 
											
												
													
														|  | 
 |  | +          val cid = record.getString("cid")
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val featureMap = new JSONObject()
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val b1: JSONObject = if (record.isNull("b1_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b1_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b2: JSONObject = if (record.isNull("b2_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b2_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b3: JSONObject = if (record.isNull("b3_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b3_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b4: JSONObject = if (record.isNull("b4_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b4_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b5: JSONObject = if (record.isNull("b5_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b5_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b6: JSONObject = if (record.isNull("b6_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b6_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b7: JSONObject = if (record.isNull("b7_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b7_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b8: JSONObject = if (record.isNull("b8_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b8_feature"))
 | 
											
												
													
														|  | 
 |  | +          val b9: JSONObject = if (record.isNull("b9_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("b9_feature"))
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("cid_" + cid, 1.0)
 | 
											
												
													
														|  | 
 |  | +          if (b1.containsKey("adid") && b1.getString("adid").nonEmpty) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("adid_" + b1.getString("adid"), 1.0)
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (b1.containsKey("adverid") && b1.getString("adverid").nonEmpty) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("adverid_" + b1.getString("adverid"), 1.0)
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (b1.containsKey("targeting_conversion") && b1.getString("targeting_conversion").nonEmpty) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("targeting_conversion_" + b1.getString("targeting_conversion"), 1.0)
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          if (b1.containsKey("cpa")) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("cpa", b1.getString("cpa").toDouble)
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          for ((bn, prefix1) <- List(
 | 
											
												
													
														|  | 
 |  | +            (b2, "b2"), (b3, "b3"),(b4, "b4"),(b5, "b5"),(b8, "b8")
 | 
											
												
													
														|  | 
 |  | +          )){
 | 
											
												
													
														|  | 
 |  | +            for (prefix2 <- List(
 | 
											
												
													
														|  | 
 |  | +              "3h", "6h", "12h", "1d", "3d", "7d"
 | 
											
												
													
														|  | 
 |  | +            )){
 | 
											
												
													
														|  | 
 |  | +              val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
											
												
													
														|  | 
 |  | +              val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
											
												
													
														|  | 
 |  | +              val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
											
												
													
														|  | 
 |  | +              val f4 = conver
 | 
											
												
													
														|  | 
 |  | +              val f5 = RankExtractorFeature_20240530.calDiv(income*1000, view)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5)
 | 
											
												
													
														|  | 
 |  | +            }
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          for ((bn, prefix1) <- List(
 | 
											
												
													
														|  | 
 |  | +            (b6, "b6"), (b7, "b7")
 | 
											
												
													
														|  | 
 |  | +          )) {
 | 
											
												
													
														|  | 
 |  | +            for (prefix2 <- List(
 | 
											
												
													
														|  | 
 |  | +              "7d", "14d"
 | 
											
												
													
														|  | 
 |  | +            )) {
 | 
											
												
													
														|  | 
 |  | +              val view = if (bn.isEmpty) 0D else bn.getIntValue("ad_view_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val click = if (bn.isEmpty) 0D else bn.getIntValue("ad_click_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val conver = if (bn.isEmpty) 0D else bn.getIntValue("ad_conversion_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val income = if (bn.isEmpty) 0D else bn.getIntValue("ad_income_" + prefix2).toDouble
 | 
											
												
													
														|  | 
 |  | +              val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
											
												
													
														|  | 
 |  | +              val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
											
												
													
														|  | 
 |  | +              val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
											
												
													
														|  | 
 |  | +              val f4 = conver
 | 
											
												
													
														|  | 
 |  | +              val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctr", f1)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ctcvr", f2)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "cvr", f3)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "conver", f4)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put(prefix1 + "_" + prefix2 + "_" + "ecpm", f5)
 | 
											
												
													
														|  | 
 |  | +            }
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val c1: JSONObject = if (record.isNull("c1_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("c1_feature"))
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val midActionList = if (c1.containsKey("action") && c1.getString("action").nonEmpty){
 | 
											
												
													
														|  | 
 |  | +            c1.getString("action").split(",").map(r=>{
 | 
											
												
													
														|  | 
 |  | +              val rList = r.split(":")
 | 
											
												
													
														|  | 
 |  | +              (rList(0), (rList(1).toInt, rList(2).toInt, rList(3).toInt, rList(4).toInt, rList(5)))
 | 
											
												
													
														|  | 
 |  | +            }).sortBy(-_._2._1).toList
 | 
											
												
													
														|  | 
 |  | +          }else {
 | 
											
												
													
														|  | 
 |  | +            new ArrayBuffer[(String, (Int, Int, Int, Int, String))]().toList
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          // u特征
 | 
											
												
													
														|  | 
 |  | +          val viewAll = midActionList.size.toDouble
 | 
											
												
													
														|  | 
 |  | +          val clickAll = midActionList.map(_._2._2).sum.toDouble
 | 
											
												
													
														|  | 
 |  | +          val converAll = midActionList.map(_._2._3).sum.toDouble
 | 
											
												
													
														|  | 
 |  | +          val incomeAll = midActionList.map(_._2._4).sum.toDouble
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("viewAll", viewAll)
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("clickAll", clickAll)
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("converAll", converAll)
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("incomeAll", incomeAll)
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("ctr_all", RankExtractorFeature_20240530.calDiv(clickAll, viewAll))
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("ctcvr_all", RankExtractorFeature_20240530.calDiv(converAll, viewAll))
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("cvr_all", RankExtractorFeature_20240530.calDiv(clickAll, converAll))
 | 
											
												
													
														|  | 
 |  | +          featureMap.put("ecpm_all", RankExtractorFeature_20240530.calDiv(incomeAll * 1000, viewAll))
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          // ui特征
 | 
											
												
													
														|  | 
 |  | +          val midTimeDiff = scala.collection.mutable.Map[String, Double]()
 | 
											
												
													
														|  | 
 |  | +          midActionList.foreach{
 | 
											
												
													
														|  | 
 |  | +            case (cid, (ts_history, click, conver, income, title)) =>
 | 
											
												
													
														|  | 
 |  | +              if (!midTimeDiff.contains("timediff_view_" + cid)){
 | 
											
												
													
														|  | 
 |  | +                midTimeDiff.put("timediff_view_" + cid, 1.0 / ((ts - ts_history).toDouble/3600.0/24.0))
 | 
											
												
													
														|  | 
 |  | +              }
 | 
											
												
													
														|  | 
 |  | +              if (!midTimeDiff.contains("timediff_click_" + cid) && click > 0) {
 | 
											
												
													
														|  | 
 |  | +                midTimeDiff.put("timediff_click_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
											
												
													
														|  | 
 |  | +              }
 | 
											
												
													
														|  | 
 |  | +              if (!midTimeDiff.contains("timediff_conver_" + cid) && conver > 0) {
 | 
											
												
													
														|  | 
 |  | +                midTimeDiff.put("timediff_conver_" + cid, 1.0 / ((ts - ts_history).toDouble / 3600.0 / 24.0))
 | 
											
												
													
														|  | 
 |  | +              }
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val midActionStatic = scala.collection.mutable.Map[String, Double]()
 | 
											
												
													
														|  | 
 |  | +          midActionList.foreach {
 | 
											
												
													
														|  | 
 |  | +            case (cid, (ts_history, click, conver, income, title)) =>
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.put("actionstatic_view_" + cid, 1.0 + midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.put("actionstatic_click_" + cid, click + midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.put("actionstatic_conver_" + cid, conver + midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.put("actionstatic_income_" + cid, income + midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          if (midTimeDiff.contains("timediff_view_" + cid)){
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("timediff_view", midTimeDiff.getOrDefault("timediff_view_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midTimeDiff.contains("timediff_click_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("timediff_click", midTimeDiff.getOrDefault("timediff_click_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midTimeDiff.contains("timediff_conver_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("timediff_conver", midTimeDiff.getOrDefault("timediff_conver_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midActionStatic.contains("actionstatic_view_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("actionstatic_view", midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("actionstatic_click", midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midActionStatic.contains("actionstatic_conver_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("actionstatic_conver", midActionStatic.getOrDefault("actionstatic_conver_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midActionStatic.contains("actionstatic_income_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("actionstatic_income", midActionStatic.getOrDefault("actionstatic_income_" + cid, 0.0))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("actionstatic_ctr", RankExtractorFeature_20240530.calDiv(
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0),
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)
 | 
											
												
													
														|  | 
 |  | +            ))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midActionStatic.contains("actionstatic_view_" + cid) && midActionStatic.contains("timediff_conver_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("actionstatic_ctcvr", RankExtractorFeature_20240530.calDiv(
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.getOrDefault("timediff_conver_" + cid, 0.0),
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.getOrDefault("actionstatic_view_" + cid, 0.0)
 | 
											
												
													
														|  | 
 |  | +            ))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          if (midActionStatic.contains("actionstatic_conver_" + cid) && midActionStatic.contains("actionstatic_click_" + cid)) {
 | 
											
												
													
														|  | 
 |  | +            featureMap.put("actionstatic_cvr", RankExtractorFeature_20240530.calDiv(
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.getOrDefault("actionstatic_click_" + cid, 0.0),
 | 
											
												
													
														|  | 
 |  | +              midActionStatic.getOrDefault("timediff_conver_" + cid, 0.0)
 | 
											
												
													
														|  | 
 |  | +            ))
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val e1: JSONObject = if (record.isNull("e1_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("e1_feature"))
 | 
											
												
													
														|  | 
 |  | +          val e2: JSONObject = if (record.isNull("e2_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("e2_feature"))
 | 
											
												
													
														|  | 
 |  | +          val title = b1.getOrDefault("cidtitle", "").toString
 | 
											
												
													
														|  | 
 |  | +          if (title.nonEmpty){
 | 
											
												
													
														|  | 
 |  | +            for ((en, prefix1) <- List((e1, "e1"), (e2, "e2"))){
 | 
											
												
													
														|  | 
 |  | +              for (prefix2 <- List("tags_3d", "tags_7d", "tags_14d")){
 | 
											
												
													
														|  | 
 |  | +                if (en.nonEmpty && en.containsKey(prefix2) && en.getString(prefix2).nonEmpty) {
 | 
											
												
													
														|  | 
 |  | +                  val (f1, f2, f3, f4) = funcC34567ForTags(en.getString(prefix2), title)
 | 
											
												
													
														|  | 
 |  | +                  featureMap.put(prefix1 + "_" + prefix2 + "_matchnum", f1)
 | 
											
												
													
														|  | 
 |  | +                  featureMap.put(prefix1 + "_" + prefix2 + "_maxscore", f3)
 | 
											
												
													
														|  | 
 |  | +                  featureMap.put(prefix1 + "_" + prefix2 + "_avgscore", f4)
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +                }
 | 
											
												
													
														|  | 
 |  | +              }
 | 
											
												
													
														|  | 
 |  | +            }
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val d1: JSONObject = if (record.isNull("d1_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("d1_feature"))
 | 
											
												
													
														|  | 
 |  | +          val d2: JSONObject = if (record.isNull("d2_feature")) new JSONObject() else
 | 
											
												
													
														|  | 
 |  | +            JSON.parseObject(record.getString("d2_feature"))
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          if (d1.nonEmpty){
 | 
											
												
													
														|  | 
 |  | +            for (prefix <- List("3h", "6h", "12h", "1d", "3d", "7d")) {
 | 
											
												
													
														|  | 
 |  | +              val view = if (!d1.containsKey("ad_view_" + prefix)) 0D else d1.getIntValue("ad_view_" + prefix).toDouble
 | 
											
												
													
														|  | 
 |  | +              val click = if (!d1.containsKey("ad_click_" + prefix)) 0D else d1.getIntValue("ad_click_" + prefix).toDouble
 | 
											
												
													
														|  | 
 |  | +              val conver = if (!d1.containsKey("ad_conversion_" + prefix)) 0D else d1.getIntValue("ad_conversion_" + prefix).toDouble
 | 
											
												
													
														|  | 
 |  | +              val income = if (!d1.containsKey("ad_income_" + prefix)) 0D else d1.getIntValue("ad_income_" + prefix).toDouble
 | 
											
												
													
														|  | 
 |  | +              val f1 = RankExtractorFeature_20240530.calDiv(click, view)
 | 
											
												
													
														|  | 
 |  | +              val f2 = RankExtractorFeature_20240530.calDiv(conver, view)
 | 
											
												
													
														|  | 
 |  | +              val f3 = RankExtractorFeature_20240530.calDiv(conver, click)
 | 
											
												
													
														|  | 
 |  | +              val f4 = conver
 | 
											
												
													
														|  | 
 |  | +              val f5 = RankExtractorFeature_20240530.calDiv(income * 1000, view)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put("d1_feature" + "_" + prefix + "_" + "ctr", f1)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put("d1_feature" + "_" + prefix + "_" + "ctcvr", f2)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put("d1_feature" + "_" + prefix + "_" + "cvr", f3)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put("d1_feature" + "_" + prefix + "_" + "conver", f4)
 | 
											
												
													
														|  | 
 |  | +              featureMap.put("d1_feature" + "_" + prefix + "_" + "ecpm", f5)
 | 
											
												
													
														|  | 
 |  | +            }
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          val vidRankMaps = scala.collection.mutable.Map[String, scala.collection.immutable.Map[String, Double]]()
 | 
											
												
													
														|  | 
 |  | +          if (d2.nonEmpty){
 | 
											
												
													
														|  | 
 |  | +            d2.foreach(r => {
 | 
											
												
													
														|  | 
 |  | +              val key = r._1
 | 
											
												
													
														|  | 
 |  | +              val value = d2.getString(key).split(",").map(r=> {
 | 
											
												
													
														|  | 
 |  | +                val rList = r.split(":")
 | 
											
												
													
														|  | 
 |  | +                (rList(0), rList(2).toDouble)
 | 
											
												
													
														|  | 
 |  | +              }).toMap
 | 
											
												
													
														|  | 
 |  | +              vidRankMaps.put(key, value)
 | 
											
												
													
														|  | 
 |  | +            })
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          for (prefix1 <- List("ctr", "ctcvr", "ecpm")) {
 | 
											
												
													
														|  | 
 |  | +            for (prefix2 <- List("1d", "3d", "7d", "14d")) {
 | 
											
												
													
														|  | 
 |  | +              if (vidRankMaps.contains(prefix1 + "_" + prefix2)){
 | 
											
												
													
														|  | 
 |  | +                val rank = vidRankMaps(prefix1 + "_" + prefix2).getOrDefault(cid, 0.0)
 | 
											
												
													
														|  | 
 |  | +                if (rank >= 1.0){
 | 
											
												
													
														|  | 
 |  | +                  featureMap.put("vid_rank_" + prefix1 + "_" + prefix2, 1.0 / rank)
 | 
											
												
													
														|  | 
 |  | +                }
 | 
											
												
													
														|  | 
 |  | +              }
 | 
											
												
													
														|  | 
 |  | +            }
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          /*
 | 
											
												
													
														|  | 
 |  | +          广告
 | 
											
												
													
														|  | 
 |  | +            sparse:cid adid adverid targeting_conversion
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +            cpa --> 1个
 | 
											
												
													
														|  | 
 |  | +            adverid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr conver ecpm  --> 30个
 | 
											
												
													
														|  | 
 |  | +            cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
											
												
													
														|  | 
 |  | +            地理//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
											
												
													
														|  | 
 |  | +            app//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
											
												
													
														|  | 
 |  | +            手机品牌//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
											
												
													
														|  | 
 |  | +            系统 无数据
 | 
											
												
													
														|  | 
 |  | +            week//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个
 | 
											
												
													
														|  | 
 |  | +            hour//cid下的 7d 14d、 ctr ctcvr cvr ecpm conver --> 10个
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          用户
 | 
											
												
													
														|  | 
 |  | +            用户历史 点击/转化 的title tag;3d 7d 14d; cid的title; 数量/最高分/平均分 --> 18个
 | 
											
												
													
														|  | 
 |  | +            用户历史 14d 看过/点过/转化次数/income; ctr cvr ctcvr ecpm;  --> 8个
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +            用户到cid的ui特征 --> 10个
 | 
											
												
													
														|  | 
 |  | +              1/用户最近看过这个cid的时间间隔
 | 
											
												
													
														|  | 
 |  | +              1/用户最近点过这个cid的时间间隔
 | 
											
												
													
														|  | 
 |  | +              1/用户最近转过这个cid的时间间隔
 | 
											
												
													
														|  | 
 |  | +              用户看过这个cid多少次
 | 
											
												
													
														|  | 
 |  | +              用户点过这个cid多少次
 | 
											
												
													
														|  | 
 |  | +              用户转过这个cid多少次
 | 
											
												
													
														|  | 
 |  | +              用户对这个cid花了多少钱
 | 
											
												
													
														|  | 
 |  | +              用户对这个cid的ctr ctcvr cvr
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          视频
 | 
											
												
													
														|  | 
 |  | +            title与cid的 sim-score-1/-2 无数据
 | 
											
												
													
														|  | 
 |  | +            vid//cid下的 3h 6h 12h 1d 3d 7d 、 ctr ctcvr cvr ecpm conver --> 30个
 | 
											
												
													
														|  | 
 |  | +            vid//cid下的 1d 3d 7d 14d、 ctr ctcvr ecpm 的rank值 倒数 --> 12个
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +           */
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +          //4 处理label信息。
 | 
											
												
													
														|  | 
 |  | +          val labels = new JSONObject
 | 
											
												
													
														|  | 
 |  | +          for (labelKey <- List("ad_is_click", "ad_is_conversion")){
 | 
											
												
													
														|  | 
 |  | +            if (!record.isNull(labelKey)){
 | 
											
												
													
														|  | 
 |  | +              labels.put(labelKey, record.getString(labelKey))
 | 
											
												
													
														|  | 
 |  | +            }
 | 
											
												
													
														|  | 
 |  | +          }
 | 
											
												
													
														|  | 
 |  | +          //5 处理log key表头。
 | 
											
												
													
														|  | 
 |  | +          val apptype = record.getString("apptype")
 | 
											
												
													
														|  | 
 |  | +          val mid = record.getString("mid")
 | 
											
												
													
														|  | 
 |  | +          val headvideoid = record.getString("headvideoid")
 | 
											
												
													
														|  | 
 |  | +          val logKey = (apptype, mid, cid, ts, headvideoid).productIterator.mkString(",")
 | 
											
												
													
														|  | 
 |  | +          val labelKey = labels.toString()
 | 
											
												
													
														|  | 
 |  | +          val featureKey = featureMap.toString()
 | 
											
												
													
														|  | 
 |  | +          //6 拼接数据,保存。
 | 
											
												
													
														|  | 
 |  | +          logKey + "\t" + labelKey + "\t" + featureKey
 | 
											
												
													
														|  | 
 |  | +        })
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +      // 4 保存数据到hdfs
 | 
											
												
													
														|  | 
 |  | +      val savePartition = dt + hh
 | 
											
												
													
														|  | 
 |  | +      val hdfsPath = savePath + "/" + savePartition
 | 
											
												
													
														|  | 
 |  | +      if (hdfsPath.nonEmpty && hdfsPath.startsWith("/dw/recommend/model/")){
 | 
											
												
													
														|  | 
 |  | +        println("删除路径并开始数据写入:" + hdfsPath)
 | 
											
												
													
														|  | 
 |  | +        MyHdfsUtils.delete_hdfs_path(hdfsPath)
 | 
											
												
													
														|  | 
 |  | +        odpsData.coalesce(repartition).saveAsTextFile(hdfsPath, classOf[GzipCodec])
 | 
											
												
													
														|  | 
 |  | +      }else{
 | 
											
												
													
														|  | 
 |  | +        println("路径不合法,无法写入:" + hdfsPath)
 | 
											
												
													
														|  | 
 |  | +      }
 | 
											
												
													
														|  | 
 |  | +    }
 | 
											
												
													
														|  | 
 |  | +  }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +  def func(record: Record, schema: TableSchema): Record = {
 | 
											
												
													
														|  | 
 |  | +    record
 | 
											
												
													
														|  | 
 |  | +  }
 | 
											
												
													
														|  | 
 |  | +
 | 
											
												
													
														|  | 
 |  | +  def funcC34567ForTags(tags: String, title: String): Tuple4[Double, String, Double, Double] = {
 | 
											
												
													
														|  | 
 |  | +    // 匹配数量 匹配词 语义最高相似度分 语义平均相似度分
 | 
											
												
													
														|  | 
 |  | +    val tagsList = tags.split(",")
 | 
											
												
													
														|  | 
 |  | +    var d1 = 0.0
 | 
											
												
													
														|  | 
 |  | +    val d2 = new ArrayBuffer[String]()
 | 
											
												
													
														|  | 
 |  | +    var d3 = 0.0
 | 
											
												
													
														|  | 
 |  | +    var d4 = 0.0
 | 
											
												
													
														|  | 
 |  | +    for (tag <- tagsList) {
 | 
											
												
													
														|  | 
 |  | +      if (title.contains(tag)) {
 | 
											
												
													
														|  | 
 |  | +        d1 = d1 + 1.0
 | 
											
												
													
														|  | 
 |  | +        d2.add(tag)
 | 
											
												
													
														|  | 
 |  | +      }
 | 
											
												
													
														|  | 
 |  | +      val score = Similarity.conceptSimilarity(tag, title)
 | 
											
												
													
														|  | 
 |  | +      d3 = if (score > d3) score else d3
 | 
											
												
													
														|  | 
 |  | +      d4 = d4 + score
 | 
											
												
													
														|  | 
 |  | +    }
 | 
											
												
													
														|  | 
 |  | +    d4 = if (tagsList.nonEmpty) d4 / tagsList.size else d4
 | 
											
												
													
														|  | 
 |  | +    (d1, d2.mkString(","), d3, d4)
 | 
											
												
													
														|  | 
 |  | +  }
 | 
											
												
													
														|  | 
 |  | +}
 |