|
@@ -20,7 +20,13 @@ object makedata_ad_32_bucket_hive_test {
|
|
|
val spark = SparkSession
|
|
|
.builder()
|
|
|
.appName(this.getClass.getName)
|
|
|
- .enableHiveSupport() // 启用 Hive 支持
|
|
|
+ .config("spark.sql.broadcastTimeout", 20 * 60)
|
|
|
+ .config("spark.sql.crossJoin.enabled", true)
|
|
|
+ .config("spark.sql.defaultCatalog","odps")
|
|
|
+ .config("spark.sql.catalog.odps", "org.apache.spark.sql.execution.datasources.v2.odps.OdpsTableCatalog")
|
|
|
+ .config("spark.sql.sources.partitionOverwriteMode", "dynamic")
|
|
|
+ .config("spark.sql.extensions", "org.apache.spark.sql.execution.datasources.v2.odps.extension.OdpsExtensions")
|
|
|
+ .config("spark.sql.catalogImplementation","hive")
|
|
|
.getOrCreate()
|
|
|
val sc = spark.sparkContext
|
|
|
|
|
@@ -1433,16 +1439,20 @@ object makedata_ad_32_bucket_hive_test {
|
|
|
|
|
|
|
|
|
// 创建 DataFrame
|
|
|
- val df = spark.createDataFrame(spark.sparkContext.parallelize(rows), schema)
|
|
|
- df.write.format("org.apache.spark.aliyun.maxcompute.datasource")
|
|
|
- .option("odpsUrl", "http://service.odps.aliyun.com/api")
|
|
|
- .option("tunnelUrl", "http://dt.cn-hangzhou.maxcompute.aliyun-inc.com")
|
|
|
- .option("table", table)
|
|
|
- .option("project", project)
|
|
|
- .option("accessKeyId", "LTAIWYUujJAm7CbH")
|
|
|
- .option("accessKeySecret", "RfSjdiWwED1sGFlsjXv0DlfTnZTG1P")
|
|
|
- .mode("append") //覆盖写
|
|
|
- .save()
|
|
|
+// val df = spark.createDataFrame(spark.sparkContext.parallelize(rows), schema)
|
|
|
+// df.write.format("org.apache.spark.aliyun.maxcompute.datasource")
|
|
|
+// .option("odpsUrl", "http://service.odps.aliyun.com/api")
|
|
|
+// .option("tunnelUrl", "http://dt.cn-hangzhou.maxcompute.aliyun-inc.com")
|
|
|
+// .option("table", table)
|
|
|
+// .option("project", project)
|
|
|
+// .option("accessKeyId", "LTAIWYUujJAm7CbH")
|
|
|
+// .option("accessKeySecret", "RfSjdiWwED1sGFlsjXv0DlfTnZTG1P")
|
|
|
+// .mode("append") //覆盖写
|
|
|
+// .save()
|
|
|
+
|
|
|
+ // 创建 DataFrame
|
|
|
+ val df = spark.createDataFrame(spark.sparkContext.parallelize(rows), schema)
|
|
|
+ df.write.mode("append").saveAsTable(table)
|
|
|
}
|
|
|
|
|
|
|