|
@@ -101,14 +101,14 @@ def get_dates_between(start_date_str, end_date_str):
|
|
|
def read_file_to_list():
|
|
|
try:
|
|
|
current_dir = os.getcwd()
|
|
|
- file_path = os.path.join(current_dir, 'holidays.txt')
|
|
|
+ file_path = os.path.join(current_dir, 'ad', 'holidays.txt')
|
|
|
with open(file_path, 'r', encoding='utf-8') as file:
|
|
|
content = file.read()
|
|
|
return content.split('\n')
|
|
|
except FileNotFoundError:
|
|
|
- print(f"错误:未找到 {file_path} 文件。")
|
|
|
+ raise Exception(f"错误:未找到 {file_path} 文件。")
|
|
|
except Exception as e:
|
|
|
- print(f"错误:发生了一个未知错误: {e}")
|
|
|
+ raise Exception(f"错误:发生了一个未知错误: {e}")
|
|
|
return []
|
|
|
|
|
|
|
|
@@ -546,26 +546,26 @@ def validate_model_data_accuracy(start_time):
|
|
|
node_id = validate_job_detail['PaiflowNodeId']
|
|
|
flow_out_put_detail = PAIClient.get_flow_out_put(pipeline_run_id, node_id, 3)
|
|
|
print(flow_out_put_detail)
|
|
|
- tabel_dict = {}
|
|
|
+ table_dict = {}
|
|
|
out_puts = flow_out_put_detail['Outputs']
|
|
|
for out_put in out_puts:
|
|
|
if out_put["Producer"] == node_dict['二分类评估-1'] and out_put["Name"] == "outputMetricTable":
|
|
|
value1 = json.loads(out_put["Info"]['value'])
|
|
|
- tabel_dict['二分类评估-1'] = value1['location']['table']
|
|
|
+ table_dict['二分类评估-1'] = value1['location']['table']
|
|
|
if out_put["Producer"] == node_dict['二分类评估-2'] and out_put["Name"] == "outputMetricTable":
|
|
|
value2 = json.loads(out_put["Info"]['value'])
|
|
|
- tabel_dict['二分类评估-2'] = value2['location']['table']
|
|
|
+ table_dict['二分类评估-2'] = value2['location']['table']
|
|
|
if out_put["Producer"] == node_dict['预测结果对比'] and out_put["Name"] == "outputTable":
|
|
|
value3 = json.loads(out_put["Info"]['value'])
|
|
|
- tabel_dict['预测结果对比'] = value3['location']['table']
|
|
|
+ table_dict['预测结果对比'] = value3['location']['table']
|
|
|
|
|
|
num = 10
|
|
|
- df = get_data_from_odps('pai_algo', tabel_dict['预测结果对比'], 10)
|
|
|
+ df = get_data_from_odps('pai_algo', table_dict['预测结果对比'], 10)
|
|
|
# 对指定列取绝对值再求和
|
|
|
old_abs_avg = df['old_error'].abs().sum() / num
|
|
|
new_abs_avg = df['new_error'].abs().sum() / num
|
|
|
- new_auc = get_dict_from_odps('pai_algo', tabel_dict['二分类评估-1'])['AUC']
|
|
|
- old_auc = get_dict_from_odps('pai_algo', tabel_dict['二分类评估-2'])['AUC']
|
|
|
+ new_auc = get_dict_from_odps('pai_algo', table_dict['二分类评估-1'])['AUC']
|
|
|
+ old_auc = get_dict_from_odps('pai_algo', table_dict['二分类评估-2'])['AUC']
|
|
|
bizdate = get_previous_days_date(1)
|
|
|
score_diff = abs(old_abs_avg - new_abs_avg)
|
|
|
msg = ""
|