|  | @@ -38,10 +38,80 @@ FM_HOME=/root/sunmingze/alphaFM/bin
 | 
	
		
			
				|  |  |  HADOOP=/opt/apps/HADOOP-COMMON/hadoop-common-current/bin/hadoop
 | 
	
		
			
				|  |  |  OSS_PATH=oss://art-recommend.oss-cn-hangzhou.aliyuncs.com/zhangbo/
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +# 0 判断上游表是否生产完成,最长等待到max_hour点
 | 
	
		
			
				|  |  | +# shellcheck disable=SC2154
 | 
	
		
			
				|  |  | +echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
 | 
	
		
			
				|  |  | +while true; do
 | 
	
		
			
				|  |  | +  python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
 | 
	
		
			
				|  |  | +  echo "python 返回值:${python_return_code}"
 | 
	
		
			
				|  |  | +  if [ $python_return_code -eq 0 ]; then
 | 
	
		
			
				|  |  | +    echo "Python程序返回0,校验存在数据,退出循环。"
 | 
	
		
			
				|  |  | +    break
 | 
	
		
			
				|  |  | +  fi
 | 
	
		
			
				|  |  | +  echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
 | 
	
		
			
				|  |  | +  sleep 300
 | 
	
		
			
				|  |  | +  current_hour=$(date +%H)
 | 
	
		
			
				|  |  | +  current_minute=$(date +%M)
 | 
	
		
			
				|  |  | +  # shellcheck disable=SC2039
 | 
	
		
			
				|  |  | +  if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
 | 
	
		
			
				|  |  | +    echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
 | 
	
		
			
				|  |  | +    exit 1
 | 
	
		
			
				|  |  | +  fi
 | 
	
		
			
				|  |  | +done
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | +# 1 生产原始数据
 | 
	
		
			
				|  |  | +echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始根据${table}生产原始数据"
 | 
	
		
			
				|  |  | +/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
 | 
	
		
			
				|  |  | +--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
 | 
	
		
			
				|  |  | +--master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
 | 
	
		
			
				|  |  | +../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
 | 
	
		
			
				|  |  | +tablePart:64 repartition:32 \
 | 
	
		
			
				|  |  | +beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
 | 
	
		
			
				|  |  | +savePath:${originDataPath} \
 | 
	
		
			
				|  |  | +table:${table}
 | 
	
		
			
				|  |  | +if [ $? -ne 0 ]; then
 | 
	
		
			
				|  |  | +   echo "Spark原始样本生产任务执行失败"
 | 
	
		
			
				|  |  | +   exit 1
 | 
	
		
			
				|  |  | +else
 | 
	
		
			
				|  |  | +   echo "spark原始样本生产执行成功"
 | 
	
		
			
				|  |  | +fi
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -# 0 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
 | 
	
		
			
				|  |  | -echo "$(date +%Y-%m-%d_%H-%M-%S)----------step0------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# 2 特征值拼接
 | 
	
		
			
				|  |  | +echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始特征值拼接"
 | 
	
		
			
				|  |  | +/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
 | 
	
		
			
				|  |  | +--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
 | 
	
		
			
				|  |  | +--master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
 | 
	
		
			
				|  |  | +../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
 | 
	
		
			
				|  |  | +readPath:${originDataPath} \
 | 
	
		
			
				|  |  | +savePath:${valueDataPath} \
 | 
	
		
			
				|  |  | +beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
 | 
	
		
			
				|  |  | +if [ $? -ne 0 ]; then
 | 
	
		
			
				|  |  | +   echo "Spark特征值拼接处理任务执行失败"
 | 
	
		
			
				|  |  | +   exit 1
 | 
	
		
			
				|  |  | +else
 | 
	
		
			
				|  |  | +   echo "spark特征值拼接处理执行成功"
 | 
	
		
			
				|  |  | +fi
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# 3 特征分桶
 | 
	
		
			
				|  |  | +echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------根据特征分桶生产重打分特征数据"
 | 
	
		
			
				|  |  | +/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
 | 
	
		
			
				|  |  | +--class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
 | 
	
		
			
				|  |  | +--master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
 | 
	
		
			
				|  |  | +../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
 | 
	
		
			
				|  |  | +readPath:${valueDataPath} \
 | 
	
		
			
				|  |  | +savePath:${bucketDataPath} \
 | 
	
		
			
				|  |  | +beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
 | 
	
		
			
				|  |  | +if [ $? -ne 0 ]; then
 | 
	
		
			
				|  |  | +   echo "Spark特征分桶处理任务执行失败"
 | 
	
		
			
				|  |  | +   exit 1
 | 
	
		
			
				|  |  | +else
 | 
	
		
			
				|  |  | +   echo "spark特征分桶处理执行成功"
 | 
	
		
			
				|  |  | +fi
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +# 4 对比AUC 前置对比2日模型数据 与 线上模型数据效果对比,如果2日模型优于线上,更新线上模型
 | 
	
		
			
				|  |  | +echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------开始对比,新:${MODEL_PATH}/${model_name}_${today_early_3}.txt,与线上online模型数据auc效果"
 | 
	
		
			
				|  |  |  $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${LAST_MODEL_HOME}/model_online.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_online.txt
 | 
	
		
			
				|  |  |  $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_predict -m ${MODEL_PATH}/${model_name}_${today_early_3}.txt -dim 8 -core 8 -out ${PREDICT_PATH}/${model_name}_${today}_new.txt
 | 
	
		
			
				|  |  |  
 | 
	
	
		
			
				|  | @@ -60,10 +130,10 @@ if [ $? -ne 0 ]; then
 | 
	
		
			
				|  |  |  fi
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -# 1 对比auc数据判断是否更新线上模型
 | 
	
		
			
				|  |  | +# 4.1 对比auc数据判断是否更新线上模型
 | 
	
		
			
				|  |  |  if [ "$online_auc" \< "$new_auc" ]; then
 | 
	
		
			
				|  |  |      echo "新模型优于线上模型: 线上模型AUC: ${online_auc}, 新模型AUC: ${new_auc}"
 | 
	
		
			
				|  |  | -    # 1.1 模型格式转换
 | 
	
		
			
				|  |  | +    # 4.1.1 模型格式转换
 | 
	
		
			
				|  |  |      cat ${MODEL_PATH}/${model_name}_${today_early_3}.txt |
 | 
	
		
			
				|  |  |      awk -F " " '{
 | 
	
		
			
				|  |  |          if (NR == 1) {
 | 
	
	
		
			
				|  | @@ -83,7 +153,7 @@ if [ "$online_auc" \< "$new_auc" ]; then
 | 
	
		
			
				|  |  |  #       /root/anaconda3/bin/python ad/ad_monitor_util.py "新模型文件格式转换失败"
 | 
	
		
			
				|  |  |         exit 1
 | 
	
		
			
				|  |  |      fi
 | 
	
		
			
				|  |  | -    # 1.2 模型文件上传OSS
 | 
	
		
			
				|  |  | +    # 4.1.2 模型文件上传OSS
 | 
	
		
			
				|  |  |      online_model_path=${OSS_PATH}/${model_name}.txt
 | 
	
		
			
				|  |  |      $HADOOP fs -test -e ${online_model_path}
 | 
	
		
			
				|  |  |      if [ $? -eq 0 ]; then
 | 
	
	
		
			
				|  | @@ -100,7 +170,7 @@ if [ "$online_auc" \< "$new_auc" ]; then
 | 
	
		
			
				|  |  |         echo "推荐模型文件至OSS失败"
 | 
	
		
			
				|  |  |         exit 1
 | 
	
		
			
				|  |  |      fi
 | 
	
		
			
				|  |  | -    # 1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
 | 
	
		
			
				|  |  | +    # 4.1.3 本地保存最新的线上使用的模型,用于下一次的AUC验证
 | 
	
		
			
				|  |  |      cp -f ${LAST_MODEL_HOME}/model_online.txt ${LAST_MODEL_HOME}/model_online_$(date +\%Y\%m\%d).txt
 | 
	
		
			
				|  |  |      cp -f ${MODEL_PATH}/${model_name}_${today_early_3}.txt ${LAST_MODEL_HOME}/model_online.txt
 | 
	
		
			
				|  |  |      if [ $? -ne 0 ]; then
 | 
	
	
		
			
				|  | @@ -116,78 +186,7 @@ fi
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  |  
 | 
	
		
			
				|  |  | -# 2 判断上游表是否生产完成,最长等待到max_hour点
 | 
	
		
			
				|  |  | -# shellcheck disable=SC2154
 | 
	
		
			
				|  |  | -echo "$(date +%Y-%m-%d_%H-%M-%S)----------step1------------开始校验是否生产完数据,分区信息:beginStr:${begin_early_2_Str}${beginHhStr},endStr:${end_early_2_Str}${endHhStr}"
 | 
	
		
			
				|  |  | -while true; do
 | 
	
		
			
				|  |  | -  python_return_code=$(python /root/joe/recommend-emr-dataprocess/qiaojialiang/checkHiveDataUtil.py --table ${table} --beginStr ${begin_early_2_Str}${beginHhStr} --endStr ${end_early_2_Str}${endHhStr})
 | 
	
		
			
				|  |  | -  echo "python 返回值:${python_return_code}"
 | 
	
		
			
				|  |  | -  if [ $python_return_code -eq 0 ]; then
 | 
	
		
			
				|  |  | -    echo "Python程序返回0,校验存在数据,退出循环。"
 | 
	
		
			
				|  |  | -    break
 | 
	
		
			
				|  |  | -  fi
 | 
	
		
			
				|  |  | -  echo "Python程序返回非0值,不存在数据,等待五分钟后再次调用。"
 | 
	
		
			
				|  |  | -  sleep 300
 | 
	
		
			
				|  |  | -  current_hour=$(date +%H)
 | 
	
		
			
				|  |  | -  current_minute=$(date +%M)
 | 
	
		
			
				|  |  | -  # shellcheck disable=SC2039
 | 
	
		
			
				|  |  | -  if (( current_hour > max_hour || (current_hour == max_hour && current_minute >= max_minute) )); then
 | 
	
		
			
				|  |  | -    echo "最长等待时间已到,失败:${current_hour}-${current_minute}"
 | 
	
		
			
				|  |  | -    exit 1
 | 
	
		
			
				|  |  | -  fi
 | 
	
		
			
				|  |  | -done
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -# 3 生产原始数据
 | 
	
		
			
				|  |  | -echo "$(date +%Y-%m-%d_%H-%M-%S)----------step2------------开始根据${table}生产原始数据"
 | 
	
		
			
				|  |  | -/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
 | 
	
		
			
				|  |  | ---class com.aliyun.odps.spark.examples.makedata_qiao.makedata_13_originData_20240705 \
 | 
	
		
			
				|  |  | ---master yarn --driver-memory 1G --executor-memory 2G --executor-cores 1 --num-executors 16 \
 | 
	
		
			
				|  |  | -../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
 | 
	
		
			
				|  |  | -tablePart:64 repartition:32 \
 | 
	
		
			
				|  |  | -beginStr:${begin_early_2_Str}${beginHhStr} endStr:${end_early_2_Str}${endHhStr} \
 | 
	
		
			
				|  |  | -savePath:${originDataPath} \
 | 
	
		
			
				|  |  | -table:${table}
 | 
	
		
			
				|  |  | -if [ $? -ne 0 ]; then
 | 
	
		
			
				|  |  | -   echo "Spark原始样本生产任务执行失败"
 | 
	
		
			
				|  |  | -   exit 1
 | 
	
		
			
				|  |  | -else
 | 
	
		
			
				|  |  | -   echo "spark原始样本生产执行成功"
 | 
	
		
			
				|  |  | -fi
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -# 4 特征值拼接
 | 
	
		
			
				|  |  | -echo "$(date +%Y-%m-%d_%H-%M-%S)----------step3------------开始特征值拼接"
 | 
	
		
			
				|  |  | -/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
 | 
	
		
			
				|  |  | ---class com.aliyun.odps.spark.examples.makedata_qiao.makedata_14_valueData_20240705 \
 | 
	
		
			
				|  |  | ---master yarn --driver-memory 1G --executor-memory 3G --executor-cores 1 --num-executors 32 \
 | 
	
		
			
				|  |  | -../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
 | 
	
		
			
				|  |  | -readPath:${originDataPath} \
 | 
	
		
			
				|  |  | -savePath:${valueDataPath} \
 | 
	
		
			
				|  |  | -beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
 | 
	
		
			
				|  |  | -if [ $? -ne 0 ]; then
 | 
	
		
			
				|  |  | -   echo "Spark特征值拼接处理任务执行失败"
 | 
	
		
			
				|  |  | -   exit 1
 | 
	
		
			
				|  |  | -else
 | 
	
		
			
				|  |  | -   echo "spark特征值拼接处理执行成功"
 | 
	
		
			
				|  |  | -fi
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -# 5 特征分桶
 | 
	
		
			
				|  |  | -echo "$(date +%Y-%m-%d_%H-%M-%S)----------step4------------根据特征分桶生产重打分特征数据"
 | 
	
		
			
				|  |  | -/opt/apps/SPARK2/spark-2.4.8-hadoop3.2-1.0.8/bin/spark-class2 org.apache.spark.deploy.SparkSubmit \
 | 
	
		
			
				|  |  | ---class com.aliyun.odps.spark.examples.makedata_qiao.makedata_16_bucketData_20240705 \
 | 
	
		
			
				|  |  | ---master yarn --driver-memory 2G --executor-memory 4G --executor-cores 1 --num-executors 16 \
 | 
	
		
			
				|  |  | -../target/spark-examples-1.0.0-SNAPSHOT-shaded.jar \
 | 
	
		
			
				|  |  | -readPath:${valueDataPath} \
 | 
	
		
			
				|  |  | -savePath:${bucketDataPath} \
 | 
	
		
			
				|  |  | -beginStr:${begin_early_2_Str} endStr:${end_early_2_Str} repartition:1000
 | 
	
		
			
				|  |  | -if [ $? -ne 0 ]; then
 | 
	
		
			
				|  |  | -   echo "Spark特征分桶处理任务执行失败"
 | 
	
		
			
				|  |  | -   exit 1
 | 
	
		
			
				|  |  | -else
 | 
	
		
			
				|  |  | -   echo "spark特征分桶处理执行成功"
 | 
	
		
			
				|  |  | -fi
 | 
	
		
			
				|  |  | -
 | 
	
		
			
				|  |  | -# 6 模型训练
 | 
	
		
			
				|  |  | +# 5 模型训练
 | 
	
		
			
				|  |  |  echo "$(date +%Y-%m-%d_%H-%M-%S)----------step5------------开始模型训练"
 | 
	
		
			
				|  |  |  $HADOOP fs -text ${bucketDataPath}/${begin_early_2_Str}/* | ${FM_HOME}/fm_train -m ${MODEL_PATH}/${model_name}_${begin_early_2_Str}.txt -dim 1,1,8 -im ${LAST_MODEL_HOME}/model_online.txt -core 8
 | 
	
		
			
				|  |  |  if [ $? -ne 0 ]; then
 |