|  | @@ -0,0 +1,146 @@
 | 
	
		
			
				|  |  | +package com.aliyun.odps.spark.examples.makedata_ad.v20240718
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import com.alibaba.fastjson.JSON
 | 
	
		
			
				|  |  | +import com.aliyun.odps.TableSchema
 | 
	
		
			
				|  |  | +import com.aliyun.odps.data.Record
 | 
	
		
			
				|  |  | +import com.aliyun.odps.spark.examples.myUtils.{MyDateUtils, ParamUtils, env}
 | 
	
		
			
				|  |  | +import examples.extractor.ExtractorUtils
 | 
	
		
			
				|  |  | +import org.apache.spark.sql.SparkSession
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +import scala.collection.JavaConversions._
 | 
	
		
			
				|  |  | +import scala.io.Source
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +/*
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | + */
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +object makedata_ad_33_bucketDataToHive_20250110 {
 | 
	
		
			
				|  |  | +  def main(args: Array[String]): Unit = {
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val spark = SparkSession
 | 
	
		
			
				|  |  | +      .builder()
 | 
	
		
			
				|  |  | +      .appName(this.getClass.getName)
 | 
	
		
			
				|  |  | +      .getOrCreate()
 | 
	
		
			
				|  |  | +    val sc = spark.sparkContext
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // 2 读取odps+表信息
 | 
	
		
			
				|  |  | +    val odpsOps = env.getODPS(sc)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val loader = getClass.getClassLoader
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val resourceUrlBucket = loader.getResource("20250217_ad_bucket_688.txt")
 | 
	
		
			
				|  |  | +    val buckets =
 | 
	
		
			
				|  |  | +      if (resourceUrlBucket != null) {
 | 
	
		
			
				|  |  | +        val buckets = Source.fromURL(resourceUrlBucket).getLines().mkString("\n")
 | 
	
		
			
				|  |  | +        Source.fromURL(resourceUrlBucket).close()
 | 
	
		
			
				|  |  | +        buckets
 | 
	
		
			
				|  |  | +      } else {
 | 
	
		
			
				|  |  | +        ""
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    println(buckets)
 | 
	
		
			
				|  |  | +    val bucketsMap = buckets.split("\n")
 | 
	
		
			
				|  |  | +      .map(r => r.replace(" ", "").replaceAll("\n", ""))
 | 
	
		
			
				|  |  | +      .filter(r => r.nonEmpty)
 | 
	
		
			
				|  |  | +      .map(r => {
 | 
	
		
			
				|  |  | +        val rList = r.split("\t")
 | 
	
		
			
				|  |  | +        (rList(0), (rList(1).toDouble, rList(2).split(",").map(_.toDouble)))
 | 
	
		
			
				|  |  | +      }).toMap
 | 
	
		
			
				|  |  | +    val bucketsMap_br = sc.broadcast(bucketsMap)
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    // 1 读取参数
 | 
	
		
			
				|  |  | +    val param = ParamUtils.parseArgs(args)
 | 
	
		
			
				|  |  | +    val readPath = param.getOrElse("readPath", "/dw/recommend/model/31_ad_sample_data_v5/")
 | 
	
		
			
				|  |  | +    val beginStr = param.getOrElse("beginStr", "20250213")
 | 
	
		
			
				|  |  | +    val endStr = param.getOrElse("endStr", "20250213")
 | 
	
		
			
				|  |  | +    val filterNames = param.getOrElse("filterNames", "").split(",").filter(_.nonEmpty).toSet
 | 
	
		
			
				|  |  | +    val whatLabel = param.getOrElse("whatLabel", "ad_is_conversion")
 | 
	
		
			
				|  |  | +    val project = param.getOrElse("project", "loghubods")
 | 
	
		
			
				|  |  | +    val table = param.getOrElse("table", "ad_easyrec_train_data_v2")
 | 
	
		
			
				|  |  | +    val partition = param.getOrElse("partition", "dt=20250208")
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +    val dateRange = MyDateUtils.getDateRange(beginStr, endStr)
 | 
	
		
			
				|  |  | +    for (date <- dateRange) {
 | 
	
		
			
				|  |  | +      println("开始执行:" + date)
 | 
	
		
			
				|  |  | +      val data = sc.textFile(readPath + "/" + date + "*").map(r => {
 | 
	
		
			
				|  |  | +        val rList = r.split("\t")
 | 
	
		
			
				|  |  | +        val logKey = rList(0)
 | 
	
		
			
				|  |  | +        val labelKey = rList(1)
 | 
	
		
			
				|  |  | +        val jsons = JSON.parseObject(rList(2))
 | 
	
		
			
				|  |  | +        val features = scala.collection.mutable.Map[String, Double]()
 | 
	
		
			
				|  |  | +        jsons.foreach(r => {
 | 
	
		
			
				|  |  | +          features.put(r._1, jsons.getDoubleValue(r._1))
 | 
	
		
			
				|  |  | +        })
 | 
	
		
			
				|  |  | +        (logKey, labelKey, features)
 | 
	
		
			
				|  |  | +      })
 | 
	
		
			
				|  |  | +      val list = data
 | 
	
		
			
				|  |  | +        .filter {
 | 
	
		
			
				|  |  | +          case (logKey, labelKey, features) =>
 | 
	
		
			
				|  |  | +            val logKeyList = logKey.split(",")
 | 
	
		
			
				|  |  | +            val apptype = logKeyList(0)
 | 
	
		
			
				|  |  | +            !Set("12", "13").contains(apptype)
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +        .map {
 | 
	
		
			
				|  |  | +          case (logKey, labelKey, features) =>
 | 
	
		
			
				|  |  | +            val label = JSON.parseObject(labelKey).getOrDefault(whatLabel, "0").toString
 | 
	
		
			
				|  |  | +            val bucketsMap = bucketsMap_br.value
 | 
	
		
			
				|  |  | +            var resultMap = features.collect {
 | 
	
		
			
				|  |  | +              case (name, score) if !filterNames.exists(name.contains) && score > 1E-8 =>
 | 
	
		
			
				|  |  | +                var key = name.replace("*", "_x_").replace("(view)", "_view")
 | 
	
		
			
				|  |  | +                if (key == "ad_is_click") {
 | 
	
		
			
				|  |  | +                  key = "has_click"
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +                val value = if (bucketsMap.contains(name)) {
 | 
	
		
			
				|  |  | +                  val (bucketsNum, buckets) = bucketsMap(name)
 | 
	
		
			
				|  |  | +                  1.0 / bucketsNum * (ExtractorUtils.findInsertPosition(buckets, score).toDouble + 1.0)
 | 
	
		
			
				|  |  | +                } else {
 | 
	
		
			
				|  |  | +                  score
 | 
	
		
			
				|  |  | +                }
 | 
	
		
			
				|  |  | +                key -> value.toString
 | 
	
		
			
				|  |  | +            }.toMap
 | 
	
		
			
				|  |  | +            resultMap += ("has_conversion" -> label)
 | 
	
		
			
				|  |  | +            resultMap += ("logkey" -> logKey)
 | 
	
		
			
				|  |  | +            resultMap
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +      // 4 hive
 | 
	
		
			
				|  |  | +      odpsOps.saveToTable(project, table, partition, list, write, defaultCreate = true, overwrite = true)
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +
 | 
	
		
			
				|  |  | +  def write(map: Map[String, String], record: Record, schema: TableSchema): Unit = {
 | 
	
		
			
				|  |  | +    for ((columnName, value) <- map) {
 | 
	
		
			
				|  |  | +      try {
 | 
	
		
			
				|  |  | +        // 查找列名在表结构中的索引
 | 
	
		
			
				|  |  | +        val columnIndex = schema.getColumnIndex(columnName)
 | 
	
		
			
				|  |  | +        // 获取列的类型
 | 
	
		
			
				|  |  | +        val columnType = schema.getColumn(columnIndex).getTypeInfo
 | 
	
		
			
				|  |  | +        try {
 | 
	
		
			
				|  |  | +          columnType.getTypeName match {
 | 
	
		
			
				|  |  | +            case "STRING" =>
 | 
	
		
			
				|  |  | +              record.setString(columnIndex, value.toString)
 | 
	
		
			
				|  |  | +            case "BIGINT" =>
 | 
	
		
			
				|  |  | +              record.setBigint(columnIndex, value.toString.toLong)
 | 
	
		
			
				|  |  | +            case "DOUBLE" =>
 | 
	
		
			
				|  |  | +              record.setDouble(columnIndex, value.toString.toDouble)
 | 
	
		
			
				|  |  | +            case "BOOLEAN" =>
 | 
	
		
			
				|  |  | +              record.setBoolean(columnIndex, value.toString.toBoolean)
 | 
	
		
			
				|  |  | +            case other =>
 | 
	
		
			
				|  |  | +              throw new IllegalArgumentException(s"Unsupported column type: $other")
 | 
	
		
			
				|  |  | +          }
 | 
	
		
			
				|  |  | +        } catch {
 | 
	
		
			
				|  |  | +          case e: NumberFormatException =>
 | 
	
		
			
				|  |  | +            println(s"Error converting value $value to type ${columnType.getTypeName} for column $columnName: ${e.getMessage}")
 | 
	
		
			
				|  |  | +          case e: Exception =>
 | 
	
		
			
				|  |  | +            println(s"Unexpected error writing value $value to column $columnName: ${e.getMessage}")
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      } catch {
 | 
	
		
			
				|  |  | +        case e: IllegalArgumentException => {
 | 
	
		
			
				|  |  | +          println(e.getMessage)
 | 
	
		
			
				|  |  | +        }
 | 
	
		
			
				|  |  | +      }
 | 
	
		
			
				|  |  | +    }
 | 
	
		
			
				|  |  | +  }
 | 
	
		
			
				|  |  | +}
 |