run_category_model_v1.py 4.8 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. #! /usr/bin/env python
  2. # -*- coding: utf-8 -*-
  3. # vim:fenc=utf-8
  4. #
  5. # Copyright © 2024 StrayWarrior <i@straywarrior.com>
  6. import sys
  7. import os
  8. sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
  9. import time
  10. import json
  11. from datetime import datetime, timedelta
  12. import pandas as pd
  13. from argparse import ArgumentParser
  14. from long_articles.category_models import CategoryRegressionV1
  15. from common.database import MySQLManager
  16. from common import db_operation
  17. from common.logging import LOG
  18. from config.dev import Config
  19. def prepare_raw_data(dt_begin, dt_end):
  20. data_fields = ['dt', 'gh_id', 'account_name', 'title', 'similarity',
  21. 'view_count_rate', 'category', 'read_avg',
  22. 'read_avg_rate']
  23. fields_str = ','.join(data_fields)
  24. db_manager = MySQLManager(Config().MYSQL_LONG_ARTICLES)
  25. sql = f"""
  26. SELECT {fields_str} FROM datastat_score WHERE dt BETWEEN {dt_begin} AND {dt_end}
  27. AND similarity > 0 AND category IS NOT NULL AND read_avg > 500
  28. AND read_avg_rate BETWEEN 0 AND 3
  29. AND `index` = 1
  30. """
  31. rows = db_manager.select(sql)
  32. df = pd.DataFrame(rows, columns=data_fields)
  33. df = df.drop_duplicates(['dt', 'gh_id', 'title'])
  34. return df
  35. def clear_old_version(db_manager, dt):
  36. update_timestamp = int(time.time())
  37. sql = f"""
  38. UPDATE account_category
  39. SET status = 0, update_timestamp = {update_timestamp}
  40. WHERE dt < {dt} and status = 1
  41. """
  42. rows = db_manager.execute(sql)
  43. print(f"updated rows: {rows}")
  44. def main():
  45. parser = ArgumentParser()
  46. parser.add_argument('-n', '--dry-run', action='store_true', help='do not update database')
  47. parser.add_argument('--run-at', help='dt, also for version')
  48. args = parser.parse_args()
  49. run_date = datetime.today()
  50. if args.run_at:
  51. run_date = datetime.strptime(args.run_at, "%Y%m%d")
  52. begin_dt = 20240914
  53. end_dt = (run_date - timedelta(1)).strftime("%Y%m%d")
  54. dt_version = end_dt
  55. LOG.info(f"data range: {begin_dt} - {end_dt}")
  56. raw_df = prepare_raw_data(begin_dt, end_dt)
  57. cate_model = CategoryRegressionV1()
  58. df = cate_model.preprocess_data(raw_df)
  59. if args.dry_run and False:
  60. cate_model.build(df)
  61. return
  62. create_timestamp = int(time.time())
  63. update_timestamp = create_timestamp
  64. records_to_save = []
  65. param_to_category_map = cate_model.reverse_category_name_map
  66. account_ids = df['gh_id'].unique()
  67. account_id_map = df[['account_name', 'gh_id']].drop_duplicates() \
  68. .set_index('gh_id')['account_name'].to_dict()
  69. account_negative_cates = {k: [] for k in account_ids}
  70. for account_id in account_ids:
  71. sub_df = df[df['gh_id'] == account_id]
  72. account_name = account_id_map[account_id]
  73. sample_count = len(sub_df)
  74. if sample_count < 5:
  75. continue
  76. params, t_stats, p_values = cate_model.run_ols_linear_regression(sub_df)
  77. current_record = {}
  78. current_record['dt'] = dt_version
  79. current_record['gh_id'] = account_id
  80. current_record['category_map'] = {}
  81. param_names = cate_model.get_param_names()
  82. for name, param, p_value in zip(param_names, params, p_values):
  83. cate_name = param_to_category_map.get(name, None)
  84. # 用于排序的品类相关性
  85. if abs(param) > 0.1 and p_value < 0.1 and cate_name is not None:
  86. print(f"{account_id} {account_name} {cate_name} {param:.3f} {p_value:.3f}")
  87. truncate_param = round(max(min(param, 0.25), -0.3), 6)
  88. current_record['category_map'][cate_name] = truncate_param
  89. # 用于冷启文章分配的负向品类
  90. if param < -0.1 and cate_name is not None and p_value < 0.3:
  91. account_negative_cates[account_id].append(cate_name)
  92. # print((account_name, cate_name, param, p_value))
  93. if not current_record['category_map']:
  94. continue
  95. current_record['category_map'] = json.dumps(current_record['category_map'], ensure_ascii=False)
  96. current_record['status'] = 1
  97. current_record['create_timestamp'] = create_timestamp
  98. current_record['update_timestamp'] = update_timestamp
  99. records_to_save.append(current_record)
  100. if args.dry_run:
  101. for record in records_to_save:
  102. print(record)
  103. return
  104. db_manager = MySQLManager(Config().MYSQL_LONG_ARTICLES)
  105. db_manager.batch_insert('account_category', records_to_save)
  106. clear_old_version(db_manager, dt_version)
  107. # 过滤空账号
  108. for account_id in [*account_negative_cates.keys()]:
  109. if not account_negative_cates[account_id]:
  110. account_negative_cates.pop(account_id)
  111. # print(json.dumps(account_negative_cates, ensure_ascii=False, indent=2))
  112. if __name__ == '__main__':
  113. main()