12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906 |
- // Copyright ©2017 The Gonum Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package gonum
- import (
- "math/cmplx"
- "gonum.org/v1/gonum/blas"
- "gonum.org/v1/gonum/internal/asm/c128"
- )
- var _ blas.Complex128Level2 = Implementation{}
- // Zgbmv performs one of the matrix-vector operations
- // y = alpha * A * x + beta * y if trans = blas.NoTrans
- // y = alpha * Aᵀ * x + beta * y if trans = blas.Trans
- // y = alpha * Aᴴ * x + beta * y if trans = blas.ConjTrans
- // where alpha and beta are scalars, x and y are vectors, and A is an m×n band matrix
- // with kL sub-diagonals and kU super-diagonals.
- func (Implementation) Zgbmv(trans blas.Transpose, m, n, kL, kU int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- if m < 0 {
- panic(mLT0)
- }
- if n < 0 {
- panic(nLT0)
- }
- if kL < 0 {
- panic(kLLT0)
- }
- if kU < 0 {
- panic(kULT0)
- }
- if lda < kL+kU+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if m == 0 || n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(min(m, n+kL)-1)+kL+kU+1 {
- panic(shortA)
- }
- var lenX, lenY int
- if trans == blas.NoTrans {
- lenX, lenY = n, m
- } else {
- lenX, lenY = m, n
- }
- if (incX > 0 && len(x) <= (lenX-1)*incX) || (incX < 0 && len(x) <= (1-lenX)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (lenY-1)*incY) || (incY < 0 && len(y) <= (1-lenY)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- var kx int
- if incX < 0 {
- kx = (1 - lenX) * incX
- }
- var ky int
- if incY < 0 {
- ky = (1 - lenY) * incY
- }
- // Form y = beta*y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:lenY] {
- y[i] = 0
- }
- } else {
- c128.ScalUnitary(beta, y[:lenY])
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < lenY; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- if incY > 0 {
- c128.ScalInc(beta, y, uintptr(lenY), uintptr(incY))
- } else {
- c128.ScalInc(beta, y, uintptr(lenY), uintptr(-incY))
- }
- }
- }
- }
- nRow := min(m, n+kL)
- nCol := kL + 1 + kU
- switch trans {
- case blas.NoTrans:
- iy := ky
- if incX == 1 {
- for i := 0; i < nRow; i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- aRow := a[i*lda+l : i*lda+u]
- off := max(0, i-kL)
- xtmp := x[off : off+u-l]
- var sum complex128
- for j, v := range aRow {
- sum += xtmp[j] * v
- }
- y[iy] += alpha * sum
- iy += incY
- }
- } else {
- for i := 0; i < nRow; i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- aRow := a[i*lda+l : i*lda+u]
- off := max(0, i-kL) * incX
- jx := kx
- var sum complex128
- for _, v := range aRow {
- sum += x[off+jx] * v
- jx += incX
- }
- y[iy] += alpha * sum
- iy += incY
- }
- }
- case blas.Trans:
- if incX == 1 {
- for i := 0; i < nRow; i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- aRow := a[i*lda+l : i*lda+u]
- off := max(0, i-kL) * incY
- alphaxi := alpha * x[i]
- jy := ky
- for _, v := range aRow {
- y[off+jy] += alphaxi * v
- jy += incY
- }
- }
- } else {
- ix := kx
- for i := 0; i < nRow; i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- aRow := a[i*lda+l : i*lda+u]
- off := max(0, i-kL) * incY
- alphaxi := alpha * x[ix]
- jy := ky
- for _, v := range aRow {
- y[off+jy] += alphaxi * v
- jy += incY
- }
- ix += incX
- }
- }
- case blas.ConjTrans:
- if incX == 1 {
- for i := 0; i < nRow; i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- aRow := a[i*lda+l : i*lda+u]
- off := max(0, i-kL) * incY
- alphaxi := alpha * x[i]
- jy := ky
- for _, v := range aRow {
- y[off+jy] += alphaxi * cmplx.Conj(v)
- jy += incY
- }
- }
- } else {
- ix := kx
- for i := 0; i < nRow; i++ {
- l := max(0, kL-i)
- u := min(nCol, n+kL-i)
- aRow := a[i*lda+l : i*lda+u]
- off := max(0, i-kL) * incY
- alphaxi := alpha * x[ix]
- jy := ky
- for _, v := range aRow {
- y[off+jy] += alphaxi * cmplx.Conj(v)
- jy += incY
- }
- ix += incX
- }
- }
- }
- }
- // Zgemv performs one of the matrix-vector operations
- // y = alpha * A * x + beta * y if trans = blas.NoTrans
- // y = alpha * Aᵀ * x + beta * y if trans = blas.Trans
- // y = alpha * Aᴴ * x + beta * y if trans = blas.ConjTrans
- // where alpha and beta are scalars, x and y are vectors, and A is an m×n dense matrix.
- func (Implementation) Zgemv(trans blas.Transpose, m, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- if m < 0 {
- panic(mLT0)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if m == 0 || n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- var lenX, lenY int
- if trans == blas.NoTrans {
- lenX = n
- lenY = m
- } else {
- lenX = m
- lenY = n
- }
- if len(a) < lda*(m-1)+n {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (lenX-1)*incX) || (incX < 0 && len(x) <= (1-lenX)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (lenY-1)*incY) || (incY < 0 && len(y) <= (1-lenY)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- var kx int
- if incX < 0 {
- kx = (1 - lenX) * incX
- }
- var ky int
- if incY < 0 {
- ky = (1 - lenY) * incY
- }
- // Form y = beta*y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:lenY] {
- y[i] = 0
- }
- } else {
- c128.ScalUnitary(beta, y[:lenY])
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < lenY; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- if incY > 0 {
- c128.ScalInc(beta, y, uintptr(lenY), uintptr(incY))
- } else {
- c128.ScalInc(beta, y, uintptr(lenY), uintptr(-incY))
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- switch trans {
- default:
- // Form y = alpha*A*x + y.
- iy := ky
- if incX == 1 {
- for i := 0; i < m; i++ {
- y[iy] += alpha * c128.DotuUnitary(a[i*lda:i*lda+n], x[:n])
- iy += incY
- }
- return
- }
- for i := 0; i < m; i++ {
- y[iy] += alpha * c128.DotuInc(a[i*lda:i*lda+n], x, uintptr(n), 1, uintptr(incX), 0, uintptr(kx))
- iy += incY
- }
- return
- case blas.Trans:
- // Form y = alpha*Aᵀ*x + y.
- ix := kx
- if incY == 1 {
- for i := 0; i < m; i++ {
- c128.AxpyUnitary(alpha*x[ix], a[i*lda:i*lda+n], y[:n])
- ix += incX
- }
- return
- }
- for i := 0; i < m; i++ {
- c128.AxpyInc(alpha*x[ix], a[i*lda:i*lda+n], y, uintptr(n), 1, uintptr(incY), 0, uintptr(ky))
- ix += incX
- }
- return
- case blas.ConjTrans:
- // Form y = alpha*Aᴴ*x + y.
- ix := kx
- if incY == 1 {
- for i := 0; i < m; i++ {
- tmp := alpha * x[ix]
- for j := 0; j < n; j++ {
- y[j] += tmp * cmplx.Conj(a[i*lda+j])
- }
- ix += incX
- }
- return
- }
- for i := 0; i < m; i++ {
- tmp := alpha * x[ix]
- jy := ky
- for j := 0; j < n; j++ {
- y[jy] += tmp * cmplx.Conj(a[i*lda+j])
- jy += incY
- }
- ix += incX
- }
- return
- }
- }
- // Zgerc performs the rank-one operation
- // A += alpha * x * yᴴ
- // where A is an m×n dense matrix, alpha is a scalar, x is an m element vector,
- // and y is an n element vector.
- func (Implementation) Zgerc(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int) {
- if m < 0 {
- panic(mLT0)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if m == 0 || n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (m-1)*incX) || (incX < 0 && len(x) <= (1-m)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- if len(a) < lda*(m-1)+n {
- panic(shortA)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- var kx, jy int
- if incX < 0 {
- kx = (1 - m) * incX
- }
- if incY < 0 {
- jy = (1 - n) * incY
- }
- for j := 0; j < n; j++ {
- if y[jy] != 0 {
- tmp := alpha * cmplx.Conj(y[jy])
- c128.AxpyInc(tmp, x, a[j:], uintptr(m), uintptr(incX), uintptr(lda), uintptr(kx), 0)
- }
- jy += incY
- }
- }
- // Zgeru performs the rank-one operation
- // A += alpha * x * yᵀ
- // where A is an m×n dense matrix, alpha is a scalar, x is an m element vector,
- // and y is an n element vector.
- func (Implementation) Zgeru(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int) {
- if m < 0 {
- panic(mLT0)
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if m == 0 || n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (m-1)*incX) || (incX < 0 && len(x) <= (1-m)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- if len(a) < lda*(m-1)+n {
- panic(shortA)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- var kx int
- if incX < 0 {
- kx = (1 - m) * incX
- }
- if incY == 1 {
- for i := 0; i < m; i++ {
- if x[kx] != 0 {
- tmp := alpha * x[kx]
- c128.AxpyUnitary(tmp, y[:n], a[i*lda:i*lda+n])
- }
- kx += incX
- }
- return
- }
- var jy int
- if incY < 0 {
- jy = (1 - n) * incY
- }
- for i := 0; i < m; i++ {
- if x[kx] != 0 {
- tmp := alpha * x[kx]
- c128.AxpyInc(tmp, y, a[i*lda:i*lda+n], uintptr(n), uintptr(incY), 1, uintptr(jy), 0)
- }
- kx += incX
- }
- }
- // Zhbmv performs the matrix-vector operation
- // y = alpha * A * x + beta * y
- // where alpha and beta are scalars, x and y are vectors, and A is an n×n
- // Hermitian band matrix with k super-diagonals. The imaginary parts of
- // the diagonal elements of A are ignored and assumed to be zero.
- func (Implementation) Zhbmv(uplo blas.Uplo, n, k int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- if n < 0 {
- panic(nLT0)
- }
- if k < 0 {
- panic(kLT0)
- }
- if lda < k+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+k+1 {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- // Set up the start indices in X and Y.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- var ky int
- if incY < 0 {
- ky = (1 - n) * incY
- }
- // Form y = beta*y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:n] {
- y[i] = 0
- }
- } else {
- for i, v := range y[:n] {
- y[i] = beta * v
- }
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < n; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- for i := 0; i < n; i++ {
- y[iy] = beta * y[iy]
- iy += incY
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- // The elements of A are accessed sequentially with one pass through a.
- switch uplo {
- case blas.Upper:
- iy := ky
- if incX == 1 {
- for i := 0; i < n; i++ {
- aRow := a[i*lda:]
- alphaxi := alpha * x[i]
- sum := alphaxi * complex(real(aRow[0]), 0)
- u := min(k+1, n-i)
- jy := incY
- for j := 1; j < u; j++ {
- v := aRow[j]
- sum += alpha * x[i+j] * v
- y[iy+jy] += alphaxi * cmplx.Conj(v)
- jy += incY
- }
- y[iy] += sum
- iy += incY
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- aRow := a[i*lda:]
- alphaxi := alpha * x[ix]
- sum := alphaxi * complex(real(aRow[0]), 0)
- u := min(k+1, n-i)
- jx := incX
- jy := incY
- for j := 1; j < u; j++ {
- v := aRow[j]
- sum += alpha * x[ix+jx] * v
- y[iy+jy] += alphaxi * cmplx.Conj(v)
- jx += incX
- jy += incY
- }
- y[iy] += sum
- ix += incX
- iy += incY
- }
- }
- case blas.Lower:
- iy := ky
- if incX == 1 {
- for i := 0; i < n; i++ {
- l := max(0, k-i)
- alphaxi := alpha * x[i]
- jy := l * incY
- aRow := a[i*lda:]
- for j := l; j < k; j++ {
- v := aRow[j]
- y[iy] += alpha * v * x[i-k+j]
- y[iy-k*incY+jy] += alphaxi * cmplx.Conj(v)
- jy += incY
- }
- y[iy] += alphaxi * complex(real(aRow[k]), 0)
- iy += incY
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- l := max(0, k-i)
- alphaxi := alpha * x[ix]
- jx := l * incX
- jy := l * incY
- aRow := a[i*lda:]
- for j := l; j < k; j++ {
- v := aRow[j]
- y[iy] += alpha * v * x[ix-k*incX+jx]
- y[iy-k*incY+jy] += alphaxi * cmplx.Conj(v)
- jx += incX
- jy += incY
- }
- y[iy] += alphaxi * complex(real(aRow[k]), 0)
- ix += incX
- iy += incY
- }
- }
- }
- }
- // Zhemv performs the matrix-vector operation
- // y = alpha * A * x + beta * y
- // where alpha and beta are scalars, x and y are vectors, and A is an n×n
- // Hermitian matrix. The imaginary parts of the diagonal elements of A are
- // ignored and assumed to be zero.
- func (Implementation) Zhemv(uplo blas.Uplo, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- // Set up the start indices in X and Y.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- var ky int
- if incY < 0 {
- ky = (1 - n) * incY
- }
- // Form y = beta*y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:n] {
- y[i] = 0
- }
- } else {
- for i, v := range y[:n] {
- y[i] = beta * v
- }
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < n; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- for i := 0; i < n; i++ {
- y[iy] = beta * y[iy]
- iy += incY
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- // The elements of A are accessed sequentially with one pass through
- // the triangular part of A.
- if uplo == blas.Upper {
- // Form y when A is stored in upper triangle.
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[i]
- var tmp2 complex128
- for j := i + 1; j < n; j++ {
- y[j] += tmp1 * cmplx.Conj(a[i*lda+j])
- tmp2 += a[i*lda+j] * x[j]
- }
- aii := complex(real(a[i*lda+i]), 0)
- y[i] += tmp1*aii + alpha*tmp2
- }
- } else {
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[ix]
- var tmp2 complex128
- jx := ix
- jy := iy
- for j := i + 1; j < n; j++ {
- jx += incX
- jy += incY
- y[jy] += tmp1 * cmplx.Conj(a[i*lda+j])
- tmp2 += a[i*lda+j] * x[jx]
- }
- aii := complex(real(a[i*lda+i]), 0)
- y[iy] += tmp1*aii + alpha*tmp2
- ix += incX
- iy += incY
- }
- }
- return
- }
- // Form y when A is stored in lower triangle.
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[i]
- var tmp2 complex128
- for j := 0; j < i; j++ {
- y[j] += tmp1 * cmplx.Conj(a[i*lda+j])
- tmp2 += a[i*lda+j] * x[j]
- }
- aii := complex(real(a[i*lda+i]), 0)
- y[i] += tmp1*aii + alpha*tmp2
- }
- } else {
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[ix]
- var tmp2 complex128
- jx := kx
- jy := ky
- for j := 0; j < i; j++ {
- y[jy] += tmp1 * cmplx.Conj(a[i*lda+j])
- tmp2 += a[i*lda+j] * x[jx]
- jx += incX
- jy += incY
- }
- aii := complex(real(a[i*lda+i]), 0)
- y[iy] += tmp1*aii + alpha*tmp2
- ix += incX
- iy += incY
- }
- }
- }
- // Zher performs the Hermitian rank-one operation
- // A += alpha * x * xᴴ
- // where A is an n×n Hermitian matrix, alpha is a real scalar, and x is an n
- // element vector. On entry, the imaginary parts of the diagonal elements of A
- // are ignored and assumed to be zero, on return they will be set to zero.
- func (Implementation) Zher(uplo blas.Uplo, n int, alpha float64, x []complex128, incX int, a []complex128, lda int) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- if uplo == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if x[i] != 0 {
- tmp := complex(alpha*real(x[i]), alpha*imag(x[i]))
- aii := real(a[i*lda+i])
- xtmp := real(tmp * cmplx.Conj(x[i]))
- a[i*lda+i] = complex(aii+xtmp, 0)
- for j := i + 1; j < n; j++ {
- a[i*lda+j] += tmp * cmplx.Conj(x[j])
- }
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- if x[ix] != 0 {
- tmp := complex(alpha*real(x[ix]), alpha*imag(x[ix]))
- aii := real(a[i*lda+i])
- xtmp := real(tmp * cmplx.Conj(x[ix]))
- a[i*lda+i] = complex(aii+xtmp, 0)
- jx := ix + incX
- for j := i + 1; j < n; j++ {
- a[i*lda+j] += tmp * cmplx.Conj(x[jx])
- jx += incX
- }
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- ix += incX
- }
- return
- }
- if incX == 1 {
- for i := 0; i < n; i++ {
- if x[i] != 0 {
- tmp := complex(alpha*real(x[i]), alpha*imag(x[i]))
- for j := 0; j < i; j++ {
- a[i*lda+j] += tmp * cmplx.Conj(x[j])
- }
- aii := real(a[i*lda+i])
- xtmp := real(tmp * cmplx.Conj(x[i]))
- a[i*lda+i] = complex(aii+xtmp, 0)
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- }
- return
- }
- ix := kx
- for i := 0; i < n; i++ {
- if x[ix] != 0 {
- tmp := complex(alpha*real(x[ix]), alpha*imag(x[ix]))
- jx := kx
- for j := 0; j < i; j++ {
- a[i*lda+j] += tmp * cmplx.Conj(x[jx])
- jx += incX
- }
- aii := real(a[i*lda+i])
- xtmp := real(tmp * cmplx.Conj(x[ix]))
- a[i*lda+i] = complex(aii+xtmp, 0)
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- ix += incX
- }
- }
- // Zher2 performs the Hermitian rank-two operation
- // A += alpha * x * yᴴ + conj(alpha) * y * xᴴ
- // where alpha is a scalar, x and y are n element vectors and A is an n×n
- // Hermitian matrix. On entry, the imaginary parts of the diagonal elements are
- // ignored and assumed to be zero. On return they will be set to zero.
- func (Implementation) Zher2(uplo blas.Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- var kx, ky int
- var ix, iy int
- if incX != 1 || incY != 1 {
- if incX < 0 {
- kx = (1 - n) * incX
- }
- if incY < 0 {
- ky = (1 - n) * incY
- }
- ix = kx
- iy = ky
- }
- if uplo == blas.Upper {
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- if x[i] != 0 || y[i] != 0 {
- tmp1 := alpha * x[i]
- tmp2 := cmplx.Conj(alpha) * y[i]
- aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
- a[i*lda+i] = complex(aii, 0)
- for j := i + 1; j < n; j++ {
- a[i*lda+j] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
- }
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- }
- return
- }
- for i := 0; i < n; i++ {
- if x[ix] != 0 || y[iy] != 0 {
- tmp1 := alpha * x[ix]
- tmp2 := cmplx.Conj(alpha) * y[iy]
- aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
- a[i*lda+i] = complex(aii, 0)
- jx := ix + incX
- jy := iy + incY
- for j := i + 1; j < n; j++ {
- a[i*lda+j] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
- jx += incX
- jy += incY
- }
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- ix += incX
- iy += incY
- }
- return
- }
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- if x[i] != 0 || y[i] != 0 {
- tmp1 := alpha * x[i]
- tmp2 := cmplx.Conj(alpha) * y[i]
- for j := 0; j < i; j++ {
- a[i*lda+j] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
- }
- aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
- a[i*lda+i] = complex(aii, 0)
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- }
- return
- }
- for i := 0; i < n; i++ {
- if x[ix] != 0 || y[iy] != 0 {
- tmp1 := alpha * x[ix]
- tmp2 := cmplx.Conj(alpha) * y[iy]
- jx := kx
- jy := ky
- for j := 0; j < i; j++ {
- a[i*lda+j] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
- jx += incX
- jy += incY
- }
- aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
- a[i*lda+i] = complex(aii, 0)
- } else {
- aii := real(a[i*lda+i])
- a[i*lda+i] = complex(aii, 0)
- }
- ix += incX
- iy += incY
- }
- }
- // Zhpmv performs the matrix-vector operation
- // y = alpha * A * x + beta * y
- // where alpha and beta are scalars, x and y are vectors, and A is an n×n
- // Hermitian matrix in packed form. The imaginary parts of the diagonal
- // elements of A are ignored and assumed to be zero.
- func (Implementation) Zhpmv(uplo blas.Uplo, n int, alpha complex128, ap []complex128, x []complex128, incX int, beta complex128, y []complex128, incY int) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- // Quick return if possible.
- if alpha == 0 && beta == 1 {
- return
- }
- // Set up the start indices in X and Y.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- var ky int
- if incY < 0 {
- ky = (1 - n) * incY
- }
- // Form y = beta*y.
- if beta != 1 {
- if incY == 1 {
- if beta == 0 {
- for i := range y[:n] {
- y[i] = 0
- }
- } else {
- for i, v := range y[:n] {
- y[i] = beta * v
- }
- }
- } else {
- iy := ky
- if beta == 0 {
- for i := 0; i < n; i++ {
- y[iy] = 0
- iy += incY
- }
- } else {
- for i := 0; i < n; i++ {
- y[iy] *= beta
- iy += incY
- }
- }
- }
- }
- if alpha == 0 {
- return
- }
- // The elements of A are accessed sequentially with one pass through ap.
- var kk int
- if uplo == blas.Upper {
- // Form y when ap contains the upper triangle.
- // Here, kk points to the current diagonal element in ap.
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[i]
- y[i] += tmp1 * complex(real(ap[kk]), 0)
- var tmp2 complex128
- k := kk + 1
- for j := i + 1; j < n; j++ {
- y[j] += tmp1 * cmplx.Conj(ap[k])
- tmp2 += ap[k] * x[j]
- k++
- }
- y[i] += alpha * tmp2
- kk += n - i
- }
- } else {
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[ix]
- y[iy] += tmp1 * complex(real(ap[kk]), 0)
- var tmp2 complex128
- jx := ix
- jy := iy
- for k := kk + 1; k < kk+n-i; k++ {
- jx += incX
- jy += incY
- y[jy] += tmp1 * cmplx.Conj(ap[k])
- tmp2 += ap[k] * x[jx]
- }
- y[iy] += alpha * tmp2
- ix += incX
- iy += incY
- kk += n - i
- }
- }
- return
- }
- // Form y when ap contains the lower triangle.
- // Here, kk points to the beginning of current row in ap.
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[i]
- var tmp2 complex128
- k := kk
- for j := 0; j < i; j++ {
- y[j] += tmp1 * cmplx.Conj(ap[k])
- tmp2 += ap[k] * x[j]
- k++
- }
- aii := complex(real(ap[kk+i]), 0)
- y[i] += tmp1*aii + alpha*tmp2
- kk += i + 1
- }
- } else {
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- tmp1 := alpha * x[ix]
- var tmp2 complex128
- jx := kx
- jy := ky
- for k := kk; k < kk+i; k++ {
- y[jy] += tmp1 * cmplx.Conj(ap[k])
- tmp2 += ap[k] * x[jx]
- jx += incX
- jy += incY
- }
- aii := complex(real(ap[kk+i]), 0)
- y[iy] += tmp1*aii + alpha*tmp2
- ix += incX
- iy += incY
- kk += i + 1
- }
- }
- }
- // Zhpr performs the Hermitian rank-1 operation
- // A += alpha * x * xᴴ
- // where alpha is a real scalar, x is a vector, and A is an n×n hermitian matrix
- // in packed form. On entry, the imaginary parts of the diagonal elements are
- // assumed to be zero, and on return they are set to zero.
- func (Implementation) Zhpr(uplo blas.Uplo, n int, alpha float64, x []complex128, incX int, ap []complex128) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- // Set up start index in X.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- // The elements of A are accessed sequentially with one pass through ap.
- var kk int
- if uplo == blas.Upper {
- // Form A when upper triangle is stored in AP.
- // Here, kk points to the current diagonal element in ap.
- if incX == 1 {
- for i := 0; i < n; i++ {
- xi := x[i]
- if xi != 0 {
- aii := real(ap[kk]) + alpha*real(cmplx.Conj(xi)*xi)
- ap[kk] = complex(aii, 0)
- tmp := complex(alpha, 0) * xi
- a := ap[kk+1 : kk+n-i]
- x := x[i+1 : n]
- for j, v := range x {
- a[j] += tmp * cmplx.Conj(v)
- }
- } else {
- ap[kk] = complex(real(ap[kk]), 0)
- }
- kk += n - i
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- xi := x[ix]
- if xi != 0 {
- aii := real(ap[kk]) + alpha*real(cmplx.Conj(xi)*xi)
- ap[kk] = complex(aii, 0)
- tmp := complex(alpha, 0) * xi
- jx := ix + incX
- a := ap[kk+1 : kk+n-i]
- for k := range a {
- a[k] += tmp * cmplx.Conj(x[jx])
- jx += incX
- }
- } else {
- ap[kk] = complex(real(ap[kk]), 0)
- }
- ix += incX
- kk += n - i
- }
- }
- return
- }
- // Form A when lower triangle is stored in AP.
- // Here, kk points to the beginning of current row in ap.
- if incX == 1 {
- for i := 0; i < n; i++ {
- xi := x[i]
- if xi != 0 {
- tmp := complex(alpha, 0) * xi
- a := ap[kk : kk+i]
- for j, v := range x[:i] {
- a[j] += tmp * cmplx.Conj(v)
- }
- aii := real(ap[kk+i]) + alpha*real(cmplx.Conj(xi)*xi)
- ap[kk+i] = complex(aii, 0)
- } else {
- ap[kk+i] = complex(real(ap[kk+i]), 0)
- }
- kk += i + 1
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- xi := x[ix]
- if xi != 0 {
- tmp := complex(alpha, 0) * xi
- a := ap[kk : kk+i]
- jx := kx
- for k := range a {
- a[k] += tmp * cmplx.Conj(x[jx])
- jx += incX
- }
- aii := real(ap[kk+i]) + alpha*real(cmplx.Conj(xi)*xi)
- ap[kk+i] = complex(aii, 0)
- } else {
- ap[kk+i] = complex(real(ap[kk+i]), 0)
- }
- ix += incX
- kk += i + 1
- }
- }
- }
- // Zhpr2 performs the Hermitian rank-2 operation
- // A += alpha * x * yᴴ + conj(alpha) * y * xᴴ
- // where alpha is a complex scalar, x and y are n element vectors, and A is an
- // n×n Hermitian matrix, supplied in packed form. On entry, the imaginary parts
- // of the diagonal elements are assumed to be zero, and on return they are set to zero.
- func (Implementation) Zhpr2(uplo blas.Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, ap []complex128) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- if incY == 0 {
- panic(zeroIncY)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
- panic(shortY)
- }
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- // Quick return if possible.
- if alpha == 0 {
- return
- }
- // Set up start indices in X and Y.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- var ky int
- if incY < 0 {
- ky = (1 - n) * incY
- }
- // The elements of A are accessed sequentially with one pass through ap.
- var kk int
- if uplo == blas.Upper {
- // Form A when upper triangle is stored in AP.
- // Here, kk points to the current diagonal element in ap.
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- if x[i] != 0 || y[i] != 0 {
- tmp1 := alpha * x[i]
- tmp2 := cmplx.Conj(alpha) * y[i]
- aii := real(ap[kk]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
- ap[kk] = complex(aii, 0)
- k := kk + 1
- for j := i + 1; j < n; j++ {
- ap[k] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
- k++
- }
- } else {
- ap[kk] = complex(real(ap[kk]), 0)
- }
- kk += n - i
- }
- } else {
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- if x[ix] != 0 || y[iy] != 0 {
- tmp1 := alpha * x[ix]
- tmp2 := cmplx.Conj(alpha) * y[iy]
- aii := real(ap[kk]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
- ap[kk] = complex(aii, 0)
- jx := ix + incX
- jy := iy + incY
- for k := kk + 1; k < kk+n-i; k++ {
- ap[k] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
- jx += incX
- jy += incY
- }
- } else {
- ap[kk] = complex(real(ap[kk]), 0)
- }
- ix += incX
- iy += incY
- kk += n - i
- }
- }
- return
- }
- // Form A when lower triangle is stored in AP.
- // Here, kk points to the beginning of current row in ap.
- if incX == 1 && incY == 1 {
- for i := 0; i < n; i++ {
- if x[i] != 0 || y[i] != 0 {
- tmp1 := alpha * x[i]
- tmp2 := cmplx.Conj(alpha) * y[i]
- k := kk
- for j := 0; j < i; j++ {
- ap[k] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
- k++
- }
- aii := real(ap[kk+i]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
- ap[kk+i] = complex(aii, 0)
- } else {
- ap[kk+i] = complex(real(ap[kk+i]), 0)
- }
- kk += i + 1
- }
- } else {
- ix := kx
- iy := ky
- for i := 0; i < n; i++ {
- if x[ix] != 0 || y[iy] != 0 {
- tmp1 := alpha * x[ix]
- tmp2 := cmplx.Conj(alpha) * y[iy]
- jx := kx
- jy := ky
- for k := kk; k < kk+i; k++ {
- ap[k] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
- jx += incX
- jy += incY
- }
- aii := real(ap[kk+i]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
- ap[kk+i] = complex(aii, 0)
- } else {
- ap[kk+i] = complex(real(ap[kk+i]), 0)
- }
- ix += incX
- iy += incY
- kk += i + 1
- }
- }
- }
- // Ztbmv performs one of the matrix-vector operations
- // x = A * x if trans = blas.NoTrans
- // x = Aᵀ * x if trans = blas.Trans
- // x = Aᴴ * x if trans = blas.ConjTrans
- // where x is an n element vector and A is an n×n triangular band matrix, with
- // (k+1) diagonals.
- func (Implementation) Ztbmv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, k int, a []complex128, lda int, x []complex128, incX int) {
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- switch diag {
- default:
- panic(badDiag)
- case blas.NonUnit, blas.Unit:
- }
- if n < 0 {
- panic(nLT0)
- }
- if k < 0 {
- panic(kLT0)
- }
- if lda < k+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+k+1 {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- // Set up start index in X.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- switch trans {
- case blas.NoTrans:
- if uplo == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- xi := x[i]
- if diag == blas.NonUnit {
- xi *= a[i*lda]
- }
- kk := min(k, n-i-1)
- for j, aij := range a[i*lda+1 : i*lda+kk+1] {
- xi += x[i+j+1] * aij
- }
- x[i] = xi
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- xi := x[ix]
- if diag == blas.NonUnit {
- xi *= a[i*lda]
- }
- kk := min(k, n-i-1)
- jx := ix + incX
- for _, aij := range a[i*lda+1 : i*lda+kk+1] {
- xi += x[jx] * aij
- jx += incX
- }
- x[ix] = xi
- ix += incX
- }
- }
- } else {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- xi := x[i]
- if diag == blas.NonUnit {
- xi *= a[i*lda+k]
- }
- kk := min(k, i)
- for j, aij := range a[i*lda+k-kk : i*lda+k] {
- xi += x[i-kk+j] * aij
- }
- x[i] = xi
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- xi := x[ix]
- if diag == blas.NonUnit {
- xi *= a[i*lda+k]
- }
- kk := min(k, i)
- jx := ix - kk*incX
- for _, aij := range a[i*lda+k-kk : i*lda+k] {
- xi += x[jx] * aij
- jx += incX
- }
- x[ix] = xi
- ix -= incX
- }
- }
- }
- case blas.Trans:
- if uplo == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- kk := min(k, n-i-1)
- xi := x[i]
- for j, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[i+j+1] += xi * aij
- }
- if diag == blas.NonUnit {
- x[i] *= a[i*lda]
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- kk := min(k, n-i-1)
- jx := ix + incX
- xi := x[ix]
- for _, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[jx] += xi * aij
- jx += incX
- }
- if diag == blas.NonUnit {
- x[ix] *= a[i*lda]
- }
- ix -= incX
- }
- }
- } else {
- if incX == 1 {
- for i := 0; i < n; i++ {
- kk := min(k, i)
- xi := x[i]
- for j, aij := range a[i*lda+k-kk : i*lda+k] {
- x[i-kk+j] += xi * aij
- }
- if diag == blas.NonUnit {
- x[i] *= a[i*lda+k]
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- kk := min(k, i)
- jx := ix - kk*incX
- xi := x[ix]
- for _, aij := range a[i*lda+k-kk : i*lda+k] {
- x[jx] += xi * aij
- jx += incX
- }
- if diag == blas.NonUnit {
- x[ix] *= a[i*lda+k]
- }
- ix += incX
- }
- }
- }
- case blas.ConjTrans:
- if uplo == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- kk := min(k, n-i-1)
- xi := x[i]
- for j, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[i+j+1] += xi * cmplx.Conj(aij)
- }
- if diag == blas.NonUnit {
- x[i] *= cmplx.Conj(a[i*lda])
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- kk := min(k, n-i-1)
- jx := ix + incX
- xi := x[ix]
- for _, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[jx] += xi * cmplx.Conj(aij)
- jx += incX
- }
- if diag == blas.NonUnit {
- x[ix] *= cmplx.Conj(a[i*lda])
- }
- ix -= incX
- }
- }
- } else {
- if incX == 1 {
- for i := 0; i < n; i++ {
- kk := min(k, i)
- xi := x[i]
- for j, aij := range a[i*lda+k-kk : i*lda+k] {
- x[i-kk+j] += xi * cmplx.Conj(aij)
- }
- if diag == blas.NonUnit {
- x[i] *= cmplx.Conj(a[i*lda+k])
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- kk := min(k, i)
- jx := ix - kk*incX
- xi := x[ix]
- for _, aij := range a[i*lda+k-kk : i*lda+k] {
- x[jx] += xi * cmplx.Conj(aij)
- jx += incX
- }
- if diag == blas.NonUnit {
- x[ix] *= cmplx.Conj(a[i*lda+k])
- }
- ix += incX
- }
- }
- }
- }
- }
- // Ztbsv solves one of the systems of equations
- // A * x = b if trans == blas.NoTrans
- // Aᵀ * x = b if trans == blas.Trans
- // Aᴴ * x = b if trans == blas.ConjTrans
- // where b and x are n element vectors and A is an n×n triangular band matrix
- // with (k+1) diagonals.
- //
- // On entry, x contains the values of b, and the solution is
- // stored in-place into x.
- //
- // No test for singularity or near-singularity is included in this
- // routine. Such tests must be performed before calling this routine.
- func (Implementation) Ztbsv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, k int, a []complex128, lda int, x []complex128, incX int) {
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- switch diag {
- default:
- panic(badDiag)
- case blas.NonUnit, blas.Unit:
- }
- if n < 0 {
- panic(nLT0)
- }
- if k < 0 {
- panic(kLT0)
- }
- if lda < k+1 {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+k+1 {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- // Set up start index in X.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- switch trans {
- case blas.NoTrans:
- if uplo == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- kk := min(k, n-i-1)
- var sum complex128
- for j, aij := range a[i*lda+1 : i*lda+kk+1] {
- sum += x[i+1+j] * aij
- }
- x[i] -= sum
- if diag == blas.NonUnit {
- x[i] /= a[i*lda]
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- kk := min(k, n-i-1)
- var sum complex128
- jx := ix + incX
- for _, aij := range a[i*lda+1 : i*lda+kk+1] {
- sum += x[jx] * aij
- jx += incX
- }
- x[ix] -= sum
- if diag == blas.NonUnit {
- x[ix] /= a[i*lda]
- }
- ix -= incX
- }
- }
- } else {
- if incX == 1 {
- for i := 0; i < n; i++ {
- kk := min(k, i)
- var sum complex128
- for j, aij := range a[i*lda+k-kk : i*lda+k] {
- sum += x[i-kk+j] * aij
- }
- x[i] -= sum
- if diag == blas.NonUnit {
- x[i] /= a[i*lda+k]
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- kk := min(k, i)
- var sum complex128
- jx := ix - kk*incX
- for _, aij := range a[i*lda+k-kk : i*lda+k] {
- sum += x[jx] * aij
- jx += incX
- }
- x[ix] -= sum
- if diag == blas.NonUnit {
- x[ix] /= a[i*lda+k]
- }
- ix += incX
- }
- }
- }
- case blas.Trans:
- if uplo == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if diag == blas.NonUnit {
- x[i] /= a[i*lda]
- }
- kk := min(k, n-i-1)
- xi := x[i]
- for j, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[i+1+j] -= xi * aij
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if diag == blas.NonUnit {
- x[ix] /= a[i*lda]
- }
- kk := min(k, n-i-1)
- xi := x[ix]
- jx := ix + incX
- for _, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[jx] -= xi * aij
- jx += incX
- }
- ix += incX
- }
- }
- } else {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[i] /= a[i*lda+k]
- }
- kk := min(k, i)
- xi := x[i]
- for j, aij := range a[i*lda+k-kk : i*lda+k] {
- x[i-kk+j] -= xi * aij
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[ix] /= a[i*lda+k]
- }
- kk := min(k, i)
- xi := x[ix]
- jx := ix - kk*incX
- for _, aij := range a[i*lda+k-kk : i*lda+k] {
- x[jx] -= xi * aij
- jx += incX
- }
- ix -= incX
- }
- }
- }
- case blas.ConjTrans:
- if uplo == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if diag == blas.NonUnit {
- x[i] /= cmplx.Conj(a[i*lda])
- }
- kk := min(k, n-i-1)
- xi := x[i]
- for j, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[i+1+j] -= xi * cmplx.Conj(aij)
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if diag == blas.NonUnit {
- x[ix] /= cmplx.Conj(a[i*lda])
- }
- kk := min(k, n-i-1)
- xi := x[ix]
- jx := ix + incX
- for _, aij := range a[i*lda+1 : i*lda+kk+1] {
- x[jx] -= xi * cmplx.Conj(aij)
- jx += incX
- }
- ix += incX
- }
- }
- } else {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[i] /= cmplx.Conj(a[i*lda+k])
- }
- kk := min(k, i)
- xi := x[i]
- for j, aij := range a[i*lda+k-kk : i*lda+k] {
- x[i-kk+j] -= xi * cmplx.Conj(aij)
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[ix] /= cmplx.Conj(a[i*lda+k])
- }
- kk := min(k, i)
- xi := x[ix]
- jx := ix - kk*incX
- for _, aij := range a[i*lda+k-kk : i*lda+k] {
- x[jx] -= xi * cmplx.Conj(aij)
- jx += incX
- }
- ix -= incX
- }
- }
- }
- }
- }
- // Ztpmv performs one of the matrix-vector operations
- // x = A * x if trans = blas.NoTrans
- // x = Aᵀ * x if trans = blas.Trans
- // x = Aᴴ * x if trans = blas.ConjTrans
- // where x is an n element vector and A is an n×n triangular matrix, supplied in
- // packed form.
- func (Implementation) Ztpmv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, ap []complex128, x []complex128, incX int) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- switch diag {
- default:
- panic(badDiag)
- case blas.NonUnit, blas.Unit:
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- // Set up start index in X.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- // The elements of A are accessed sequentially with one pass through A.
- if trans == blas.NoTrans {
- // Form x = A*x.
- if uplo == blas.Upper {
- // kk points to the current diagonal element in ap.
- kk := 0
- if incX == 1 {
- x = x[:n]
- for i := range x {
- if diag == blas.NonUnit {
- x[i] *= ap[kk]
- }
- if n-i-1 > 0 {
- x[i] += c128.DotuUnitary(ap[kk+1:kk+n-i], x[i+1:])
- }
- kk += n - i
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if diag == blas.NonUnit {
- x[ix] *= ap[kk]
- }
- if n-i-1 > 0 {
- x[ix] += c128.DotuInc(ap[kk+1:kk+n-i], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
- }
- ix += incX
- kk += n - i
- }
- }
- } else {
- // kk points to the beginning of current row in ap.
- kk := n*(n+1)/2 - n
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[i] *= ap[kk+i]
- }
- if i > 0 {
- x[i] += c128.DotuUnitary(ap[kk:kk+i], x[:i])
- }
- kk -= i
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[ix] *= ap[kk+i]
- }
- if i > 0 {
- x[ix] += c128.DotuInc(ap[kk:kk+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
- }
- ix -= incX
- kk -= i
- }
- }
- }
- return
- }
- if trans == blas.Trans {
- // Form x = Aᵀ*x.
- if uplo == blas.Upper {
- // kk points to the current diagonal element in ap.
- kk := n*(n+1)/2 - 1
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- xi := x[i]
- if diag == blas.NonUnit {
- x[i] *= ap[kk]
- }
- if n-i-1 > 0 {
- c128.AxpyUnitary(xi, ap[kk+1:kk+n-i], x[i+1:n])
- }
- kk -= n - i + 1
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- xi := x[ix]
- if diag == blas.NonUnit {
- x[ix] *= ap[kk]
- }
- if n-i-1 > 0 {
- c128.AxpyInc(xi, ap[kk+1:kk+n-i], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
- }
- ix -= incX
- kk -= n - i + 1
- }
- }
- } else {
- // kk points to the beginning of current row in ap.
- kk := 0
- if incX == 1 {
- x = x[:n]
- for i := range x {
- if i > 0 {
- c128.AxpyUnitary(x[i], ap[kk:kk+i], x[:i])
- }
- if diag == blas.NonUnit {
- x[i] *= ap[kk+i]
- }
- kk += i + 1
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if i > 0 {
- c128.AxpyInc(x[ix], ap[kk:kk+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
- }
- if diag == blas.NonUnit {
- x[ix] *= ap[kk+i]
- }
- ix += incX
- kk += i + 1
- }
- }
- }
- return
- }
- // Form x = Aᴴ*x.
- if uplo == blas.Upper {
- // kk points to the current diagonal element in ap.
- kk := n*(n+1)/2 - 1
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- xi := x[i]
- if diag == blas.NonUnit {
- x[i] *= cmplx.Conj(ap[kk])
- }
- k := kk + 1
- for j := i + 1; j < n; j++ {
- x[j] += xi * cmplx.Conj(ap[k])
- k++
- }
- kk -= n - i + 1
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- xi := x[ix]
- if diag == blas.NonUnit {
- x[ix] *= cmplx.Conj(ap[kk])
- }
- jx := ix + incX
- k := kk + 1
- for j := i + 1; j < n; j++ {
- x[jx] += xi * cmplx.Conj(ap[k])
- jx += incX
- k++
- }
- ix -= incX
- kk -= n - i + 1
- }
- }
- } else {
- // kk points to the beginning of current row in ap.
- kk := 0
- if incX == 1 {
- x = x[:n]
- for i, xi := range x {
- for j := 0; j < i; j++ {
- x[j] += xi * cmplx.Conj(ap[kk+j])
- }
- if diag == blas.NonUnit {
- x[i] *= cmplx.Conj(ap[kk+i])
- }
- kk += i + 1
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- xi := x[ix]
- jx := kx
- for j := 0; j < i; j++ {
- x[jx] += xi * cmplx.Conj(ap[kk+j])
- jx += incX
- }
- if diag == blas.NonUnit {
- x[ix] *= cmplx.Conj(ap[kk+i])
- }
- ix += incX
- kk += i + 1
- }
- }
- }
- }
- // Ztpsv solves one of the systems of equations
- // A * x = b if trans == blas.NoTrans
- // Aᵀ * x = b if trans == blas.Trans
- // Aᴴ * x = b if trans == blas.ConjTrans
- // where b and x are n element vectors and A is an n×n triangular matrix in
- // packed form.
- //
- // On entry, x contains the values of b, and the solution is
- // stored in-place into x.
- //
- // No test for singularity or near-singularity is included in this
- // routine. Such tests must be performed before calling this routine.
- func (Implementation) Ztpsv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, ap []complex128, x []complex128, incX int) {
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- switch diag {
- default:
- panic(badDiag)
- case blas.NonUnit, blas.Unit:
- }
- if n < 0 {
- panic(nLT0)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(ap) < n*(n+1)/2 {
- panic(shortAP)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- // Set up start index in X.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- // The elements of A are accessed sequentially with one pass through ap.
- if trans == blas.NoTrans {
- // Form x = inv(A)*x.
- if uplo == blas.Upper {
- kk := n*(n+1)/2 - 1
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- aii := ap[kk]
- if n-i-1 > 0 {
- x[i] -= c128.DotuUnitary(x[i+1:n], ap[kk+1:kk+n-i])
- }
- if diag == blas.NonUnit {
- x[i] /= aii
- }
- kk -= n - i + 1
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- aii := ap[kk]
- if n-i-1 > 0 {
- x[ix] -= c128.DotuInc(x, ap[kk+1:kk+n-i], uintptr(n-i-1), uintptr(incX), 1, uintptr(ix+incX), 0)
- }
- if diag == blas.NonUnit {
- x[ix] /= aii
- }
- ix -= incX
- kk -= n - i + 1
- }
- }
- } else {
- kk := 0
- if incX == 1 {
- for i := 0; i < n; i++ {
- if i > 0 {
- x[i] -= c128.DotuUnitary(x[:i], ap[kk:kk+i])
- }
- if diag == blas.NonUnit {
- x[i] /= ap[kk+i]
- }
- kk += i + 1
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if i > 0 {
- x[ix] -= c128.DotuInc(x, ap[kk:kk+i], uintptr(i), uintptr(incX), 1, uintptr(kx), 0)
- }
- if diag == blas.NonUnit {
- x[ix] /= ap[kk+i]
- }
- ix += incX
- kk += i + 1
- }
- }
- }
- return
- }
- if trans == blas.Trans {
- // Form x = inv(Aᵀ)*x.
- if uplo == blas.Upper {
- kk := 0
- if incX == 1 {
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[j] /= ap[kk]
- }
- if n-j-1 > 0 {
- c128.AxpyUnitary(-x[j], ap[kk+1:kk+n-j], x[j+1:n])
- }
- kk += n - j
- }
- } else {
- jx := kx
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[jx] /= ap[kk]
- }
- if n-j-1 > 0 {
- c128.AxpyInc(-x[jx], ap[kk+1:kk+n-j], x, uintptr(n-j-1), 1, uintptr(incX), 0, uintptr(jx+incX))
- }
- jx += incX
- kk += n - j
- }
- }
- } else {
- kk := n*(n+1)/2 - n
- if incX == 1 {
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[j] /= ap[kk+j]
- }
- if j > 0 {
- c128.AxpyUnitary(-x[j], ap[kk:kk+j], x[:j])
- }
- kk -= j
- }
- } else {
- jx := kx + (n-1)*incX
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[jx] /= ap[kk+j]
- }
- if j > 0 {
- c128.AxpyInc(-x[jx], ap[kk:kk+j], x, uintptr(j), 1, uintptr(incX), 0, uintptr(kx))
- }
- jx -= incX
- kk -= j
- }
- }
- }
- return
- }
- // Form x = inv(Aᴴ)*x.
- if uplo == blas.Upper {
- kk := 0
- if incX == 1 {
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[j] /= cmplx.Conj(ap[kk])
- }
- xj := x[j]
- k := kk + 1
- for i := j + 1; i < n; i++ {
- x[i] -= xj * cmplx.Conj(ap[k])
- k++
- }
- kk += n - j
- }
- } else {
- jx := kx
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[jx] /= cmplx.Conj(ap[kk])
- }
- xj := x[jx]
- ix := jx + incX
- k := kk + 1
- for i := j + 1; i < n; i++ {
- x[ix] -= xj * cmplx.Conj(ap[k])
- ix += incX
- k++
- }
- jx += incX
- kk += n - j
- }
- }
- } else {
- kk := n*(n+1)/2 - n
- if incX == 1 {
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[j] /= cmplx.Conj(ap[kk+j])
- }
- xj := x[j]
- for i := 0; i < j; i++ {
- x[i] -= xj * cmplx.Conj(ap[kk+i])
- }
- kk -= j
- }
- } else {
- jx := kx + (n-1)*incX
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[jx] /= cmplx.Conj(ap[kk+j])
- }
- xj := x[jx]
- ix := kx
- for i := 0; i < j; i++ {
- x[ix] -= xj * cmplx.Conj(ap[kk+i])
- ix += incX
- }
- jx -= incX
- kk -= j
- }
- }
- }
- }
- // Ztrmv performs one of the matrix-vector operations
- // x = A * x if trans = blas.NoTrans
- // x = Aᵀ * x if trans = blas.Trans
- // x = Aᴴ * x if trans = blas.ConjTrans
- // where x is a vector, and A is an n×n triangular matrix.
- func (Implementation) Ztrmv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, a []complex128, lda int, x []complex128, incX int) {
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- switch diag {
- default:
- panic(badDiag)
- case blas.NonUnit, blas.Unit:
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- // Set up start index in X.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- // The elements of A are accessed sequentially with one pass through A.
- if trans == blas.NoTrans {
- // Form x = A*x.
- if uplo == blas.Upper {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if diag == blas.NonUnit {
- x[i] *= a[i*lda+i]
- }
- if n-i-1 > 0 {
- x[i] += c128.DotuUnitary(a[i*lda+i+1:i*lda+n], x[i+1:n])
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if diag == blas.NonUnit {
- x[ix] *= a[i*lda+i]
- }
- if n-i-1 > 0 {
- x[ix] += c128.DotuInc(a[i*lda+i+1:i*lda+n], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
- }
- ix += incX
- }
- }
- } else {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[i] *= a[i*lda+i]
- }
- if i > 0 {
- x[i] += c128.DotuUnitary(a[i*lda:i*lda+i], x[:i])
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- if diag == blas.NonUnit {
- x[ix] *= a[i*lda+i]
- }
- if i > 0 {
- x[ix] += c128.DotuInc(a[i*lda:i*lda+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
- }
- ix -= incX
- }
- }
- }
- return
- }
- if trans == blas.Trans {
- // Form x = Aᵀ*x.
- if uplo == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- xi := x[i]
- if diag == blas.NonUnit {
- x[i] *= a[i*lda+i]
- }
- if n-i-1 > 0 {
- c128.AxpyUnitary(xi, a[i*lda+i+1:i*lda+n], x[i+1:n])
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- xi := x[ix]
- if diag == blas.NonUnit {
- x[ix] *= a[i*lda+i]
- }
- if n-i-1 > 0 {
- c128.AxpyInc(xi, a[i*lda+i+1:i*lda+n], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
- }
- ix -= incX
- }
- }
- } else {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if i > 0 {
- c128.AxpyUnitary(x[i], a[i*lda:i*lda+i], x[:i])
- }
- if diag == blas.NonUnit {
- x[i] *= a[i*lda+i]
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if i > 0 {
- c128.AxpyInc(x[ix], a[i*lda:i*lda+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
- }
- if diag == blas.NonUnit {
- x[ix] *= a[i*lda+i]
- }
- ix += incX
- }
- }
- }
- return
- }
- // Form x = Aᴴ*x.
- if uplo == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- xi := x[i]
- if diag == blas.NonUnit {
- x[i] *= cmplx.Conj(a[i*lda+i])
- }
- for j := i + 1; j < n; j++ {
- x[j] += xi * cmplx.Conj(a[i*lda+j])
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- xi := x[ix]
- if diag == blas.NonUnit {
- x[ix] *= cmplx.Conj(a[i*lda+i])
- }
- jx := ix + incX
- for j := i + 1; j < n; j++ {
- x[jx] += xi * cmplx.Conj(a[i*lda+j])
- jx += incX
- }
- ix -= incX
- }
- }
- } else {
- if incX == 1 {
- for i := 0; i < n; i++ {
- for j := 0; j < i; j++ {
- x[j] += x[i] * cmplx.Conj(a[i*lda+j])
- }
- if diag == blas.NonUnit {
- x[i] *= cmplx.Conj(a[i*lda+i])
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- jx := kx
- for j := 0; j < i; j++ {
- x[jx] += x[ix] * cmplx.Conj(a[i*lda+j])
- jx += incX
- }
- if diag == blas.NonUnit {
- x[ix] *= cmplx.Conj(a[i*lda+i])
- }
- ix += incX
- }
- }
- }
- }
- // Ztrsv solves one of the systems of equations
- // A * x = b if trans == blas.NoTrans
- // Aᵀ * x = b if trans == blas.Trans
- // Aᴴ * x = b if trans == blas.ConjTrans
- // where b and x are n element vectors and A is an n×n triangular matrix.
- //
- // On entry, x contains the values of b, and the solution is
- // stored in-place into x.
- //
- // No test for singularity or near-singularity is included in this
- // routine. Such tests must be performed before calling this routine.
- func (Implementation) Ztrsv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, a []complex128, lda int, x []complex128, incX int) {
- switch trans {
- default:
- panic(badTranspose)
- case blas.NoTrans, blas.Trans, blas.ConjTrans:
- }
- switch uplo {
- default:
- panic(badUplo)
- case blas.Upper, blas.Lower:
- }
- switch diag {
- default:
- panic(badDiag)
- case blas.NonUnit, blas.Unit:
- }
- if n < 0 {
- panic(nLT0)
- }
- if lda < max(1, n) {
- panic(badLdA)
- }
- if incX == 0 {
- panic(zeroIncX)
- }
- // Quick return if possible.
- if n == 0 {
- return
- }
- // For zero matrix size the following slice length checks are trivially satisfied.
- if len(a) < lda*(n-1)+n {
- panic(shortA)
- }
- if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
- panic(shortX)
- }
- // Set up start index in X.
- var kx int
- if incX < 0 {
- kx = (1 - n) * incX
- }
- // The elements of A are accessed sequentially with one pass through A.
- if trans == blas.NoTrans {
- // Form x = inv(A)*x.
- if uplo == blas.Upper {
- if incX == 1 {
- for i := n - 1; i >= 0; i-- {
- aii := a[i*lda+i]
- if n-i-1 > 0 {
- x[i] -= c128.DotuUnitary(x[i+1:n], a[i*lda+i+1:i*lda+n])
- }
- if diag == blas.NonUnit {
- x[i] /= aii
- }
- }
- } else {
- ix := kx + (n-1)*incX
- for i := n - 1; i >= 0; i-- {
- aii := a[i*lda+i]
- if n-i-1 > 0 {
- x[ix] -= c128.DotuInc(x, a[i*lda+i+1:i*lda+n], uintptr(n-i-1), uintptr(incX), 1, uintptr(ix+incX), 0)
- }
- if diag == blas.NonUnit {
- x[ix] /= aii
- }
- ix -= incX
- }
- }
- } else {
- if incX == 1 {
- for i := 0; i < n; i++ {
- if i > 0 {
- x[i] -= c128.DotuUnitary(x[:i], a[i*lda:i*lda+i])
- }
- if diag == blas.NonUnit {
- x[i] /= a[i*lda+i]
- }
- }
- } else {
- ix := kx
- for i := 0; i < n; i++ {
- if i > 0 {
- x[ix] -= c128.DotuInc(x, a[i*lda:i*lda+i], uintptr(i), uintptr(incX), 1, uintptr(kx), 0)
- }
- if diag == blas.NonUnit {
- x[ix] /= a[i*lda+i]
- }
- ix += incX
- }
- }
- }
- return
- }
- if trans == blas.Trans {
- // Form x = inv(Aᵀ)*x.
- if uplo == blas.Upper {
- if incX == 1 {
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[j] /= a[j*lda+j]
- }
- if n-j-1 > 0 {
- c128.AxpyUnitary(-x[j], a[j*lda+j+1:j*lda+n], x[j+1:n])
- }
- }
- } else {
- jx := kx
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[jx] /= a[j*lda+j]
- }
- if n-j-1 > 0 {
- c128.AxpyInc(-x[jx], a[j*lda+j+1:j*lda+n], x, uintptr(n-j-1), 1, uintptr(incX), 0, uintptr(jx+incX))
- }
- jx += incX
- }
- }
- } else {
- if incX == 1 {
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[j] /= a[j*lda+j]
- }
- xj := x[j]
- if j > 0 {
- c128.AxpyUnitary(-xj, a[j*lda:j*lda+j], x[:j])
- }
- }
- } else {
- jx := kx + (n-1)*incX
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[jx] /= a[j*lda+j]
- }
- if j > 0 {
- c128.AxpyInc(-x[jx], a[j*lda:j*lda+j], x, uintptr(j), 1, uintptr(incX), 0, uintptr(kx))
- }
- jx -= incX
- }
- }
- }
- return
- }
- // Form x = inv(Aᴴ)*x.
- if uplo == blas.Upper {
- if incX == 1 {
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[j] /= cmplx.Conj(a[j*lda+j])
- }
- xj := x[j]
- for i := j + 1; i < n; i++ {
- x[i] -= xj * cmplx.Conj(a[j*lda+i])
- }
- }
- } else {
- jx := kx
- for j := 0; j < n; j++ {
- if diag == blas.NonUnit {
- x[jx] /= cmplx.Conj(a[j*lda+j])
- }
- xj := x[jx]
- ix := jx + incX
- for i := j + 1; i < n; i++ {
- x[ix] -= xj * cmplx.Conj(a[j*lda+i])
- ix += incX
- }
- jx += incX
- }
- }
- } else {
- if incX == 1 {
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[j] /= cmplx.Conj(a[j*lda+j])
- }
- xj := x[j]
- for i := 0; i < j; i++ {
- x[i] -= xj * cmplx.Conj(a[j*lda+i])
- }
- }
- } else {
- jx := kx + (n-1)*incX
- for j := n - 1; j >= 0; j-- {
- if diag == blas.NonUnit {
- x[jx] /= cmplx.Conj(a[j*lda+j])
- }
- xj := x[jx]
- ix := kx
- for i := 0; i < j; i++ {
- x[ix] -= xj * cmplx.Conj(a[j*lda+i])
- ix += incX
- }
- jx -= incX
- }
- }
- }
- }
|