level2cmplx128.go 60 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906
  1. // Copyright ©2017 The Gonum Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package gonum
  5. import (
  6. "math/cmplx"
  7. "gonum.org/v1/gonum/blas"
  8. "gonum.org/v1/gonum/internal/asm/c128"
  9. )
  10. var _ blas.Complex128Level2 = Implementation{}
  11. // Zgbmv performs one of the matrix-vector operations
  12. // y = alpha * A * x + beta * y if trans = blas.NoTrans
  13. // y = alpha * Aᵀ * x + beta * y if trans = blas.Trans
  14. // y = alpha * Aᴴ * x + beta * y if trans = blas.ConjTrans
  15. // where alpha and beta are scalars, x and y are vectors, and A is an m×n band matrix
  16. // with kL sub-diagonals and kU super-diagonals.
  17. func (Implementation) Zgbmv(trans blas.Transpose, m, n, kL, kU int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
  18. switch trans {
  19. default:
  20. panic(badTranspose)
  21. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  22. }
  23. if m < 0 {
  24. panic(mLT0)
  25. }
  26. if n < 0 {
  27. panic(nLT0)
  28. }
  29. if kL < 0 {
  30. panic(kLLT0)
  31. }
  32. if kU < 0 {
  33. panic(kULT0)
  34. }
  35. if lda < kL+kU+1 {
  36. panic(badLdA)
  37. }
  38. if incX == 0 {
  39. panic(zeroIncX)
  40. }
  41. if incY == 0 {
  42. panic(zeroIncY)
  43. }
  44. // Quick return if possible.
  45. if m == 0 || n == 0 {
  46. return
  47. }
  48. // For zero matrix size the following slice length checks are trivially satisfied.
  49. if len(a) < lda*(min(m, n+kL)-1)+kL+kU+1 {
  50. panic(shortA)
  51. }
  52. var lenX, lenY int
  53. if trans == blas.NoTrans {
  54. lenX, lenY = n, m
  55. } else {
  56. lenX, lenY = m, n
  57. }
  58. if (incX > 0 && len(x) <= (lenX-1)*incX) || (incX < 0 && len(x) <= (1-lenX)*incX) {
  59. panic(shortX)
  60. }
  61. if (incY > 0 && len(y) <= (lenY-1)*incY) || (incY < 0 && len(y) <= (1-lenY)*incY) {
  62. panic(shortY)
  63. }
  64. // Quick return if possible.
  65. if alpha == 0 && beta == 1 {
  66. return
  67. }
  68. var kx int
  69. if incX < 0 {
  70. kx = (1 - lenX) * incX
  71. }
  72. var ky int
  73. if incY < 0 {
  74. ky = (1 - lenY) * incY
  75. }
  76. // Form y = beta*y.
  77. if beta != 1 {
  78. if incY == 1 {
  79. if beta == 0 {
  80. for i := range y[:lenY] {
  81. y[i] = 0
  82. }
  83. } else {
  84. c128.ScalUnitary(beta, y[:lenY])
  85. }
  86. } else {
  87. iy := ky
  88. if beta == 0 {
  89. for i := 0; i < lenY; i++ {
  90. y[iy] = 0
  91. iy += incY
  92. }
  93. } else {
  94. if incY > 0 {
  95. c128.ScalInc(beta, y, uintptr(lenY), uintptr(incY))
  96. } else {
  97. c128.ScalInc(beta, y, uintptr(lenY), uintptr(-incY))
  98. }
  99. }
  100. }
  101. }
  102. nRow := min(m, n+kL)
  103. nCol := kL + 1 + kU
  104. switch trans {
  105. case blas.NoTrans:
  106. iy := ky
  107. if incX == 1 {
  108. for i := 0; i < nRow; i++ {
  109. l := max(0, kL-i)
  110. u := min(nCol, n+kL-i)
  111. aRow := a[i*lda+l : i*lda+u]
  112. off := max(0, i-kL)
  113. xtmp := x[off : off+u-l]
  114. var sum complex128
  115. for j, v := range aRow {
  116. sum += xtmp[j] * v
  117. }
  118. y[iy] += alpha * sum
  119. iy += incY
  120. }
  121. } else {
  122. for i := 0; i < nRow; i++ {
  123. l := max(0, kL-i)
  124. u := min(nCol, n+kL-i)
  125. aRow := a[i*lda+l : i*lda+u]
  126. off := max(0, i-kL) * incX
  127. jx := kx
  128. var sum complex128
  129. for _, v := range aRow {
  130. sum += x[off+jx] * v
  131. jx += incX
  132. }
  133. y[iy] += alpha * sum
  134. iy += incY
  135. }
  136. }
  137. case blas.Trans:
  138. if incX == 1 {
  139. for i := 0; i < nRow; i++ {
  140. l := max(0, kL-i)
  141. u := min(nCol, n+kL-i)
  142. aRow := a[i*lda+l : i*lda+u]
  143. off := max(0, i-kL) * incY
  144. alphaxi := alpha * x[i]
  145. jy := ky
  146. for _, v := range aRow {
  147. y[off+jy] += alphaxi * v
  148. jy += incY
  149. }
  150. }
  151. } else {
  152. ix := kx
  153. for i := 0; i < nRow; i++ {
  154. l := max(0, kL-i)
  155. u := min(nCol, n+kL-i)
  156. aRow := a[i*lda+l : i*lda+u]
  157. off := max(0, i-kL) * incY
  158. alphaxi := alpha * x[ix]
  159. jy := ky
  160. for _, v := range aRow {
  161. y[off+jy] += alphaxi * v
  162. jy += incY
  163. }
  164. ix += incX
  165. }
  166. }
  167. case blas.ConjTrans:
  168. if incX == 1 {
  169. for i := 0; i < nRow; i++ {
  170. l := max(0, kL-i)
  171. u := min(nCol, n+kL-i)
  172. aRow := a[i*lda+l : i*lda+u]
  173. off := max(0, i-kL) * incY
  174. alphaxi := alpha * x[i]
  175. jy := ky
  176. for _, v := range aRow {
  177. y[off+jy] += alphaxi * cmplx.Conj(v)
  178. jy += incY
  179. }
  180. }
  181. } else {
  182. ix := kx
  183. for i := 0; i < nRow; i++ {
  184. l := max(0, kL-i)
  185. u := min(nCol, n+kL-i)
  186. aRow := a[i*lda+l : i*lda+u]
  187. off := max(0, i-kL) * incY
  188. alphaxi := alpha * x[ix]
  189. jy := ky
  190. for _, v := range aRow {
  191. y[off+jy] += alphaxi * cmplx.Conj(v)
  192. jy += incY
  193. }
  194. ix += incX
  195. }
  196. }
  197. }
  198. }
  199. // Zgemv performs one of the matrix-vector operations
  200. // y = alpha * A * x + beta * y if trans = blas.NoTrans
  201. // y = alpha * Aᵀ * x + beta * y if trans = blas.Trans
  202. // y = alpha * Aᴴ * x + beta * y if trans = blas.ConjTrans
  203. // where alpha and beta are scalars, x and y are vectors, and A is an m×n dense matrix.
  204. func (Implementation) Zgemv(trans blas.Transpose, m, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
  205. switch trans {
  206. default:
  207. panic(badTranspose)
  208. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  209. }
  210. if m < 0 {
  211. panic(mLT0)
  212. }
  213. if n < 0 {
  214. panic(nLT0)
  215. }
  216. if lda < max(1, n) {
  217. panic(badLdA)
  218. }
  219. if incX == 0 {
  220. panic(zeroIncX)
  221. }
  222. if incY == 0 {
  223. panic(zeroIncY)
  224. }
  225. // Quick return if possible.
  226. if m == 0 || n == 0 {
  227. return
  228. }
  229. // For zero matrix size the following slice length checks are trivially satisfied.
  230. var lenX, lenY int
  231. if trans == blas.NoTrans {
  232. lenX = n
  233. lenY = m
  234. } else {
  235. lenX = m
  236. lenY = n
  237. }
  238. if len(a) < lda*(m-1)+n {
  239. panic(shortA)
  240. }
  241. if (incX > 0 && len(x) <= (lenX-1)*incX) || (incX < 0 && len(x) <= (1-lenX)*incX) {
  242. panic(shortX)
  243. }
  244. if (incY > 0 && len(y) <= (lenY-1)*incY) || (incY < 0 && len(y) <= (1-lenY)*incY) {
  245. panic(shortY)
  246. }
  247. // Quick return if possible.
  248. if alpha == 0 && beta == 1 {
  249. return
  250. }
  251. var kx int
  252. if incX < 0 {
  253. kx = (1 - lenX) * incX
  254. }
  255. var ky int
  256. if incY < 0 {
  257. ky = (1 - lenY) * incY
  258. }
  259. // Form y = beta*y.
  260. if beta != 1 {
  261. if incY == 1 {
  262. if beta == 0 {
  263. for i := range y[:lenY] {
  264. y[i] = 0
  265. }
  266. } else {
  267. c128.ScalUnitary(beta, y[:lenY])
  268. }
  269. } else {
  270. iy := ky
  271. if beta == 0 {
  272. for i := 0; i < lenY; i++ {
  273. y[iy] = 0
  274. iy += incY
  275. }
  276. } else {
  277. if incY > 0 {
  278. c128.ScalInc(beta, y, uintptr(lenY), uintptr(incY))
  279. } else {
  280. c128.ScalInc(beta, y, uintptr(lenY), uintptr(-incY))
  281. }
  282. }
  283. }
  284. }
  285. if alpha == 0 {
  286. return
  287. }
  288. switch trans {
  289. default:
  290. // Form y = alpha*A*x + y.
  291. iy := ky
  292. if incX == 1 {
  293. for i := 0; i < m; i++ {
  294. y[iy] += alpha * c128.DotuUnitary(a[i*lda:i*lda+n], x[:n])
  295. iy += incY
  296. }
  297. return
  298. }
  299. for i := 0; i < m; i++ {
  300. y[iy] += alpha * c128.DotuInc(a[i*lda:i*lda+n], x, uintptr(n), 1, uintptr(incX), 0, uintptr(kx))
  301. iy += incY
  302. }
  303. return
  304. case blas.Trans:
  305. // Form y = alpha*Aᵀ*x + y.
  306. ix := kx
  307. if incY == 1 {
  308. for i := 0; i < m; i++ {
  309. c128.AxpyUnitary(alpha*x[ix], a[i*lda:i*lda+n], y[:n])
  310. ix += incX
  311. }
  312. return
  313. }
  314. for i := 0; i < m; i++ {
  315. c128.AxpyInc(alpha*x[ix], a[i*lda:i*lda+n], y, uintptr(n), 1, uintptr(incY), 0, uintptr(ky))
  316. ix += incX
  317. }
  318. return
  319. case blas.ConjTrans:
  320. // Form y = alpha*Aᴴ*x + y.
  321. ix := kx
  322. if incY == 1 {
  323. for i := 0; i < m; i++ {
  324. tmp := alpha * x[ix]
  325. for j := 0; j < n; j++ {
  326. y[j] += tmp * cmplx.Conj(a[i*lda+j])
  327. }
  328. ix += incX
  329. }
  330. return
  331. }
  332. for i := 0; i < m; i++ {
  333. tmp := alpha * x[ix]
  334. jy := ky
  335. for j := 0; j < n; j++ {
  336. y[jy] += tmp * cmplx.Conj(a[i*lda+j])
  337. jy += incY
  338. }
  339. ix += incX
  340. }
  341. return
  342. }
  343. }
  344. // Zgerc performs the rank-one operation
  345. // A += alpha * x * yᴴ
  346. // where A is an m×n dense matrix, alpha is a scalar, x is an m element vector,
  347. // and y is an n element vector.
  348. func (Implementation) Zgerc(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int) {
  349. if m < 0 {
  350. panic(mLT0)
  351. }
  352. if n < 0 {
  353. panic(nLT0)
  354. }
  355. if lda < max(1, n) {
  356. panic(badLdA)
  357. }
  358. if incX == 0 {
  359. panic(zeroIncX)
  360. }
  361. if incY == 0 {
  362. panic(zeroIncY)
  363. }
  364. // Quick return if possible.
  365. if m == 0 || n == 0 {
  366. return
  367. }
  368. // For zero matrix size the following slice length checks are trivially satisfied.
  369. if (incX > 0 && len(x) <= (m-1)*incX) || (incX < 0 && len(x) <= (1-m)*incX) {
  370. panic(shortX)
  371. }
  372. if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
  373. panic(shortY)
  374. }
  375. if len(a) < lda*(m-1)+n {
  376. panic(shortA)
  377. }
  378. // Quick return if possible.
  379. if alpha == 0 {
  380. return
  381. }
  382. var kx, jy int
  383. if incX < 0 {
  384. kx = (1 - m) * incX
  385. }
  386. if incY < 0 {
  387. jy = (1 - n) * incY
  388. }
  389. for j := 0; j < n; j++ {
  390. if y[jy] != 0 {
  391. tmp := alpha * cmplx.Conj(y[jy])
  392. c128.AxpyInc(tmp, x, a[j:], uintptr(m), uintptr(incX), uintptr(lda), uintptr(kx), 0)
  393. }
  394. jy += incY
  395. }
  396. }
  397. // Zgeru performs the rank-one operation
  398. // A += alpha * x * yᵀ
  399. // where A is an m×n dense matrix, alpha is a scalar, x is an m element vector,
  400. // and y is an n element vector.
  401. func (Implementation) Zgeru(m, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int) {
  402. if m < 0 {
  403. panic(mLT0)
  404. }
  405. if n < 0 {
  406. panic(nLT0)
  407. }
  408. if lda < max(1, n) {
  409. panic(badLdA)
  410. }
  411. if incX == 0 {
  412. panic(zeroIncX)
  413. }
  414. if incY == 0 {
  415. panic(zeroIncY)
  416. }
  417. // Quick return if possible.
  418. if m == 0 || n == 0 {
  419. return
  420. }
  421. // For zero matrix size the following slice length checks are trivially satisfied.
  422. if (incX > 0 && len(x) <= (m-1)*incX) || (incX < 0 && len(x) <= (1-m)*incX) {
  423. panic(shortX)
  424. }
  425. if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
  426. panic(shortY)
  427. }
  428. if len(a) < lda*(m-1)+n {
  429. panic(shortA)
  430. }
  431. // Quick return if possible.
  432. if alpha == 0 {
  433. return
  434. }
  435. var kx int
  436. if incX < 0 {
  437. kx = (1 - m) * incX
  438. }
  439. if incY == 1 {
  440. for i := 0; i < m; i++ {
  441. if x[kx] != 0 {
  442. tmp := alpha * x[kx]
  443. c128.AxpyUnitary(tmp, y[:n], a[i*lda:i*lda+n])
  444. }
  445. kx += incX
  446. }
  447. return
  448. }
  449. var jy int
  450. if incY < 0 {
  451. jy = (1 - n) * incY
  452. }
  453. for i := 0; i < m; i++ {
  454. if x[kx] != 0 {
  455. tmp := alpha * x[kx]
  456. c128.AxpyInc(tmp, y, a[i*lda:i*lda+n], uintptr(n), uintptr(incY), 1, uintptr(jy), 0)
  457. }
  458. kx += incX
  459. }
  460. }
  461. // Zhbmv performs the matrix-vector operation
  462. // y = alpha * A * x + beta * y
  463. // where alpha and beta are scalars, x and y are vectors, and A is an n×n
  464. // Hermitian band matrix with k super-diagonals. The imaginary parts of
  465. // the diagonal elements of A are ignored and assumed to be zero.
  466. func (Implementation) Zhbmv(uplo blas.Uplo, n, k int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
  467. switch uplo {
  468. default:
  469. panic(badUplo)
  470. case blas.Upper, blas.Lower:
  471. }
  472. if n < 0 {
  473. panic(nLT0)
  474. }
  475. if k < 0 {
  476. panic(kLT0)
  477. }
  478. if lda < k+1 {
  479. panic(badLdA)
  480. }
  481. if incX == 0 {
  482. panic(zeroIncX)
  483. }
  484. if incY == 0 {
  485. panic(zeroIncY)
  486. }
  487. // Quick return if possible.
  488. if n == 0 {
  489. return
  490. }
  491. // For zero matrix size the following slice length checks are trivially satisfied.
  492. if len(a) < lda*(n-1)+k+1 {
  493. panic(shortA)
  494. }
  495. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  496. panic(shortX)
  497. }
  498. if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
  499. panic(shortY)
  500. }
  501. // Quick return if possible.
  502. if alpha == 0 && beta == 1 {
  503. return
  504. }
  505. // Set up the start indices in X and Y.
  506. var kx int
  507. if incX < 0 {
  508. kx = (1 - n) * incX
  509. }
  510. var ky int
  511. if incY < 0 {
  512. ky = (1 - n) * incY
  513. }
  514. // Form y = beta*y.
  515. if beta != 1 {
  516. if incY == 1 {
  517. if beta == 0 {
  518. for i := range y[:n] {
  519. y[i] = 0
  520. }
  521. } else {
  522. for i, v := range y[:n] {
  523. y[i] = beta * v
  524. }
  525. }
  526. } else {
  527. iy := ky
  528. if beta == 0 {
  529. for i := 0; i < n; i++ {
  530. y[iy] = 0
  531. iy += incY
  532. }
  533. } else {
  534. for i := 0; i < n; i++ {
  535. y[iy] = beta * y[iy]
  536. iy += incY
  537. }
  538. }
  539. }
  540. }
  541. if alpha == 0 {
  542. return
  543. }
  544. // The elements of A are accessed sequentially with one pass through a.
  545. switch uplo {
  546. case blas.Upper:
  547. iy := ky
  548. if incX == 1 {
  549. for i := 0; i < n; i++ {
  550. aRow := a[i*lda:]
  551. alphaxi := alpha * x[i]
  552. sum := alphaxi * complex(real(aRow[0]), 0)
  553. u := min(k+1, n-i)
  554. jy := incY
  555. for j := 1; j < u; j++ {
  556. v := aRow[j]
  557. sum += alpha * x[i+j] * v
  558. y[iy+jy] += alphaxi * cmplx.Conj(v)
  559. jy += incY
  560. }
  561. y[iy] += sum
  562. iy += incY
  563. }
  564. } else {
  565. ix := kx
  566. for i := 0; i < n; i++ {
  567. aRow := a[i*lda:]
  568. alphaxi := alpha * x[ix]
  569. sum := alphaxi * complex(real(aRow[0]), 0)
  570. u := min(k+1, n-i)
  571. jx := incX
  572. jy := incY
  573. for j := 1; j < u; j++ {
  574. v := aRow[j]
  575. sum += alpha * x[ix+jx] * v
  576. y[iy+jy] += alphaxi * cmplx.Conj(v)
  577. jx += incX
  578. jy += incY
  579. }
  580. y[iy] += sum
  581. ix += incX
  582. iy += incY
  583. }
  584. }
  585. case blas.Lower:
  586. iy := ky
  587. if incX == 1 {
  588. for i := 0; i < n; i++ {
  589. l := max(0, k-i)
  590. alphaxi := alpha * x[i]
  591. jy := l * incY
  592. aRow := a[i*lda:]
  593. for j := l; j < k; j++ {
  594. v := aRow[j]
  595. y[iy] += alpha * v * x[i-k+j]
  596. y[iy-k*incY+jy] += alphaxi * cmplx.Conj(v)
  597. jy += incY
  598. }
  599. y[iy] += alphaxi * complex(real(aRow[k]), 0)
  600. iy += incY
  601. }
  602. } else {
  603. ix := kx
  604. for i := 0; i < n; i++ {
  605. l := max(0, k-i)
  606. alphaxi := alpha * x[ix]
  607. jx := l * incX
  608. jy := l * incY
  609. aRow := a[i*lda:]
  610. for j := l; j < k; j++ {
  611. v := aRow[j]
  612. y[iy] += alpha * v * x[ix-k*incX+jx]
  613. y[iy-k*incY+jy] += alphaxi * cmplx.Conj(v)
  614. jx += incX
  615. jy += incY
  616. }
  617. y[iy] += alphaxi * complex(real(aRow[k]), 0)
  618. ix += incX
  619. iy += incY
  620. }
  621. }
  622. }
  623. }
  624. // Zhemv performs the matrix-vector operation
  625. // y = alpha * A * x + beta * y
  626. // where alpha and beta are scalars, x and y are vectors, and A is an n×n
  627. // Hermitian matrix. The imaginary parts of the diagonal elements of A are
  628. // ignored and assumed to be zero.
  629. func (Implementation) Zhemv(uplo blas.Uplo, n int, alpha complex128, a []complex128, lda int, x []complex128, incX int, beta complex128, y []complex128, incY int) {
  630. switch uplo {
  631. default:
  632. panic(badUplo)
  633. case blas.Upper, blas.Lower:
  634. }
  635. if n < 0 {
  636. panic(nLT0)
  637. }
  638. if lda < max(1, n) {
  639. panic(badLdA)
  640. }
  641. if incX == 0 {
  642. panic(zeroIncX)
  643. }
  644. if incY == 0 {
  645. panic(zeroIncY)
  646. }
  647. // Quick return if possible.
  648. if n == 0 {
  649. return
  650. }
  651. // For zero matrix size the following slice length checks are trivially satisfied.
  652. if len(a) < lda*(n-1)+n {
  653. panic(shortA)
  654. }
  655. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  656. panic(shortX)
  657. }
  658. if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
  659. panic(shortY)
  660. }
  661. // Quick return if possible.
  662. if alpha == 0 && beta == 1 {
  663. return
  664. }
  665. // Set up the start indices in X and Y.
  666. var kx int
  667. if incX < 0 {
  668. kx = (1 - n) * incX
  669. }
  670. var ky int
  671. if incY < 0 {
  672. ky = (1 - n) * incY
  673. }
  674. // Form y = beta*y.
  675. if beta != 1 {
  676. if incY == 1 {
  677. if beta == 0 {
  678. for i := range y[:n] {
  679. y[i] = 0
  680. }
  681. } else {
  682. for i, v := range y[:n] {
  683. y[i] = beta * v
  684. }
  685. }
  686. } else {
  687. iy := ky
  688. if beta == 0 {
  689. for i := 0; i < n; i++ {
  690. y[iy] = 0
  691. iy += incY
  692. }
  693. } else {
  694. for i := 0; i < n; i++ {
  695. y[iy] = beta * y[iy]
  696. iy += incY
  697. }
  698. }
  699. }
  700. }
  701. if alpha == 0 {
  702. return
  703. }
  704. // The elements of A are accessed sequentially with one pass through
  705. // the triangular part of A.
  706. if uplo == blas.Upper {
  707. // Form y when A is stored in upper triangle.
  708. if incX == 1 && incY == 1 {
  709. for i := 0; i < n; i++ {
  710. tmp1 := alpha * x[i]
  711. var tmp2 complex128
  712. for j := i + 1; j < n; j++ {
  713. y[j] += tmp1 * cmplx.Conj(a[i*lda+j])
  714. tmp2 += a[i*lda+j] * x[j]
  715. }
  716. aii := complex(real(a[i*lda+i]), 0)
  717. y[i] += tmp1*aii + alpha*tmp2
  718. }
  719. } else {
  720. ix := kx
  721. iy := ky
  722. for i := 0; i < n; i++ {
  723. tmp1 := alpha * x[ix]
  724. var tmp2 complex128
  725. jx := ix
  726. jy := iy
  727. for j := i + 1; j < n; j++ {
  728. jx += incX
  729. jy += incY
  730. y[jy] += tmp1 * cmplx.Conj(a[i*lda+j])
  731. tmp2 += a[i*lda+j] * x[jx]
  732. }
  733. aii := complex(real(a[i*lda+i]), 0)
  734. y[iy] += tmp1*aii + alpha*tmp2
  735. ix += incX
  736. iy += incY
  737. }
  738. }
  739. return
  740. }
  741. // Form y when A is stored in lower triangle.
  742. if incX == 1 && incY == 1 {
  743. for i := 0; i < n; i++ {
  744. tmp1 := alpha * x[i]
  745. var tmp2 complex128
  746. for j := 0; j < i; j++ {
  747. y[j] += tmp1 * cmplx.Conj(a[i*lda+j])
  748. tmp2 += a[i*lda+j] * x[j]
  749. }
  750. aii := complex(real(a[i*lda+i]), 0)
  751. y[i] += tmp1*aii + alpha*tmp2
  752. }
  753. } else {
  754. ix := kx
  755. iy := ky
  756. for i := 0; i < n; i++ {
  757. tmp1 := alpha * x[ix]
  758. var tmp2 complex128
  759. jx := kx
  760. jy := ky
  761. for j := 0; j < i; j++ {
  762. y[jy] += tmp1 * cmplx.Conj(a[i*lda+j])
  763. tmp2 += a[i*lda+j] * x[jx]
  764. jx += incX
  765. jy += incY
  766. }
  767. aii := complex(real(a[i*lda+i]), 0)
  768. y[iy] += tmp1*aii + alpha*tmp2
  769. ix += incX
  770. iy += incY
  771. }
  772. }
  773. }
  774. // Zher performs the Hermitian rank-one operation
  775. // A += alpha * x * xᴴ
  776. // where A is an n×n Hermitian matrix, alpha is a real scalar, and x is an n
  777. // element vector. On entry, the imaginary parts of the diagonal elements of A
  778. // are ignored and assumed to be zero, on return they will be set to zero.
  779. func (Implementation) Zher(uplo blas.Uplo, n int, alpha float64, x []complex128, incX int, a []complex128, lda int) {
  780. switch uplo {
  781. default:
  782. panic(badUplo)
  783. case blas.Upper, blas.Lower:
  784. }
  785. if n < 0 {
  786. panic(nLT0)
  787. }
  788. if lda < max(1, n) {
  789. panic(badLdA)
  790. }
  791. if incX == 0 {
  792. panic(zeroIncX)
  793. }
  794. // Quick return if possible.
  795. if n == 0 {
  796. return
  797. }
  798. // For zero matrix size the following slice length checks are trivially satisfied.
  799. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  800. panic(shortX)
  801. }
  802. if len(a) < lda*(n-1)+n {
  803. panic(shortA)
  804. }
  805. // Quick return if possible.
  806. if alpha == 0 {
  807. return
  808. }
  809. var kx int
  810. if incX < 0 {
  811. kx = (1 - n) * incX
  812. }
  813. if uplo == blas.Upper {
  814. if incX == 1 {
  815. for i := 0; i < n; i++ {
  816. if x[i] != 0 {
  817. tmp := complex(alpha*real(x[i]), alpha*imag(x[i]))
  818. aii := real(a[i*lda+i])
  819. xtmp := real(tmp * cmplx.Conj(x[i]))
  820. a[i*lda+i] = complex(aii+xtmp, 0)
  821. for j := i + 1; j < n; j++ {
  822. a[i*lda+j] += tmp * cmplx.Conj(x[j])
  823. }
  824. } else {
  825. aii := real(a[i*lda+i])
  826. a[i*lda+i] = complex(aii, 0)
  827. }
  828. }
  829. return
  830. }
  831. ix := kx
  832. for i := 0; i < n; i++ {
  833. if x[ix] != 0 {
  834. tmp := complex(alpha*real(x[ix]), alpha*imag(x[ix]))
  835. aii := real(a[i*lda+i])
  836. xtmp := real(tmp * cmplx.Conj(x[ix]))
  837. a[i*lda+i] = complex(aii+xtmp, 0)
  838. jx := ix + incX
  839. for j := i + 1; j < n; j++ {
  840. a[i*lda+j] += tmp * cmplx.Conj(x[jx])
  841. jx += incX
  842. }
  843. } else {
  844. aii := real(a[i*lda+i])
  845. a[i*lda+i] = complex(aii, 0)
  846. }
  847. ix += incX
  848. }
  849. return
  850. }
  851. if incX == 1 {
  852. for i := 0; i < n; i++ {
  853. if x[i] != 0 {
  854. tmp := complex(alpha*real(x[i]), alpha*imag(x[i]))
  855. for j := 0; j < i; j++ {
  856. a[i*lda+j] += tmp * cmplx.Conj(x[j])
  857. }
  858. aii := real(a[i*lda+i])
  859. xtmp := real(tmp * cmplx.Conj(x[i]))
  860. a[i*lda+i] = complex(aii+xtmp, 0)
  861. } else {
  862. aii := real(a[i*lda+i])
  863. a[i*lda+i] = complex(aii, 0)
  864. }
  865. }
  866. return
  867. }
  868. ix := kx
  869. for i := 0; i < n; i++ {
  870. if x[ix] != 0 {
  871. tmp := complex(alpha*real(x[ix]), alpha*imag(x[ix]))
  872. jx := kx
  873. for j := 0; j < i; j++ {
  874. a[i*lda+j] += tmp * cmplx.Conj(x[jx])
  875. jx += incX
  876. }
  877. aii := real(a[i*lda+i])
  878. xtmp := real(tmp * cmplx.Conj(x[ix]))
  879. a[i*lda+i] = complex(aii+xtmp, 0)
  880. } else {
  881. aii := real(a[i*lda+i])
  882. a[i*lda+i] = complex(aii, 0)
  883. }
  884. ix += incX
  885. }
  886. }
  887. // Zher2 performs the Hermitian rank-two operation
  888. // A += alpha * x * yᴴ + conj(alpha) * y * xᴴ
  889. // where alpha is a scalar, x and y are n element vectors and A is an n×n
  890. // Hermitian matrix. On entry, the imaginary parts of the diagonal elements are
  891. // ignored and assumed to be zero. On return they will be set to zero.
  892. func (Implementation) Zher2(uplo blas.Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, a []complex128, lda int) {
  893. switch uplo {
  894. default:
  895. panic(badUplo)
  896. case blas.Upper, blas.Lower:
  897. }
  898. if n < 0 {
  899. panic(nLT0)
  900. }
  901. if lda < max(1, n) {
  902. panic(badLdA)
  903. }
  904. if incX == 0 {
  905. panic(zeroIncX)
  906. }
  907. if incY == 0 {
  908. panic(zeroIncY)
  909. }
  910. // Quick return if possible.
  911. if n == 0 {
  912. return
  913. }
  914. // For zero matrix size the following slice length checks are trivially satisfied.
  915. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  916. panic(shortX)
  917. }
  918. if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
  919. panic(shortY)
  920. }
  921. if len(a) < lda*(n-1)+n {
  922. panic(shortA)
  923. }
  924. // Quick return if possible.
  925. if alpha == 0 {
  926. return
  927. }
  928. var kx, ky int
  929. var ix, iy int
  930. if incX != 1 || incY != 1 {
  931. if incX < 0 {
  932. kx = (1 - n) * incX
  933. }
  934. if incY < 0 {
  935. ky = (1 - n) * incY
  936. }
  937. ix = kx
  938. iy = ky
  939. }
  940. if uplo == blas.Upper {
  941. if incX == 1 && incY == 1 {
  942. for i := 0; i < n; i++ {
  943. if x[i] != 0 || y[i] != 0 {
  944. tmp1 := alpha * x[i]
  945. tmp2 := cmplx.Conj(alpha) * y[i]
  946. aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
  947. a[i*lda+i] = complex(aii, 0)
  948. for j := i + 1; j < n; j++ {
  949. a[i*lda+j] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
  950. }
  951. } else {
  952. aii := real(a[i*lda+i])
  953. a[i*lda+i] = complex(aii, 0)
  954. }
  955. }
  956. return
  957. }
  958. for i := 0; i < n; i++ {
  959. if x[ix] != 0 || y[iy] != 0 {
  960. tmp1 := alpha * x[ix]
  961. tmp2 := cmplx.Conj(alpha) * y[iy]
  962. aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
  963. a[i*lda+i] = complex(aii, 0)
  964. jx := ix + incX
  965. jy := iy + incY
  966. for j := i + 1; j < n; j++ {
  967. a[i*lda+j] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
  968. jx += incX
  969. jy += incY
  970. }
  971. } else {
  972. aii := real(a[i*lda+i])
  973. a[i*lda+i] = complex(aii, 0)
  974. }
  975. ix += incX
  976. iy += incY
  977. }
  978. return
  979. }
  980. if incX == 1 && incY == 1 {
  981. for i := 0; i < n; i++ {
  982. if x[i] != 0 || y[i] != 0 {
  983. tmp1 := alpha * x[i]
  984. tmp2 := cmplx.Conj(alpha) * y[i]
  985. for j := 0; j < i; j++ {
  986. a[i*lda+j] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
  987. }
  988. aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
  989. a[i*lda+i] = complex(aii, 0)
  990. } else {
  991. aii := real(a[i*lda+i])
  992. a[i*lda+i] = complex(aii, 0)
  993. }
  994. }
  995. return
  996. }
  997. for i := 0; i < n; i++ {
  998. if x[ix] != 0 || y[iy] != 0 {
  999. tmp1 := alpha * x[ix]
  1000. tmp2 := cmplx.Conj(alpha) * y[iy]
  1001. jx := kx
  1002. jy := ky
  1003. for j := 0; j < i; j++ {
  1004. a[i*lda+j] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
  1005. jx += incX
  1006. jy += incY
  1007. }
  1008. aii := real(a[i*lda+i]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
  1009. a[i*lda+i] = complex(aii, 0)
  1010. } else {
  1011. aii := real(a[i*lda+i])
  1012. a[i*lda+i] = complex(aii, 0)
  1013. }
  1014. ix += incX
  1015. iy += incY
  1016. }
  1017. }
  1018. // Zhpmv performs the matrix-vector operation
  1019. // y = alpha * A * x + beta * y
  1020. // where alpha and beta are scalars, x and y are vectors, and A is an n×n
  1021. // Hermitian matrix in packed form. The imaginary parts of the diagonal
  1022. // elements of A are ignored and assumed to be zero.
  1023. func (Implementation) Zhpmv(uplo blas.Uplo, n int, alpha complex128, ap []complex128, x []complex128, incX int, beta complex128, y []complex128, incY int) {
  1024. switch uplo {
  1025. default:
  1026. panic(badUplo)
  1027. case blas.Upper, blas.Lower:
  1028. }
  1029. if n < 0 {
  1030. panic(nLT0)
  1031. }
  1032. if incX == 0 {
  1033. panic(zeroIncX)
  1034. }
  1035. if incY == 0 {
  1036. panic(zeroIncY)
  1037. }
  1038. // Quick return if possible.
  1039. if n == 0 {
  1040. return
  1041. }
  1042. // For zero matrix size the following slice length checks are trivially satisfied.
  1043. if len(ap) < n*(n+1)/2 {
  1044. panic(shortAP)
  1045. }
  1046. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  1047. panic(shortX)
  1048. }
  1049. if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
  1050. panic(shortY)
  1051. }
  1052. // Quick return if possible.
  1053. if alpha == 0 && beta == 1 {
  1054. return
  1055. }
  1056. // Set up the start indices in X and Y.
  1057. var kx int
  1058. if incX < 0 {
  1059. kx = (1 - n) * incX
  1060. }
  1061. var ky int
  1062. if incY < 0 {
  1063. ky = (1 - n) * incY
  1064. }
  1065. // Form y = beta*y.
  1066. if beta != 1 {
  1067. if incY == 1 {
  1068. if beta == 0 {
  1069. for i := range y[:n] {
  1070. y[i] = 0
  1071. }
  1072. } else {
  1073. for i, v := range y[:n] {
  1074. y[i] = beta * v
  1075. }
  1076. }
  1077. } else {
  1078. iy := ky
  1079. if beta == 0 {
  1080. for i := 0; i < n; i++ {
  1081. y[iy] = 0
  1082. iy += incY
  1083. }
  1084. } else {
  1085. for i := 0; i < n; i++ {
  1086. y[iy] *= beta
  1087. iy += incY
  1088. }
  1089. }
  1090. }
  1091. }
  1092. if alpha == 0 {
  1093. return
  1094. }
  1095. // The elements of A are accessed sequentially with one pass through ap.
  1096. var kk int
  1097. if uplo == blas.Upper {
  1098. // Form y when ap contains the upper triangle.
  1099. // Here, kk points to the current diagonal element in ap.
  1100. if incX == 1 && incY == 1 {
  1101. for i := 0; i < n; i++ {
  1102. tmp1 := alpha * x[i]
  1103. y[i] += tmp1 * complex(real(ap[kk]), 0)
  1104. var tmp2 complex128
  1105. k := kk + 1
  1106. for j := i + 1; j < n; j++ {
  1107. y[j] += tmp1 * cmplx.Conj(ap[k])
  1108. tmp2 += ap[k] * x[j]
  1109. k++
  1110. }
  1111. y[i] += alpha * tmp2
  1112. kk += n - i
  1113. }
  1114. } else {
  1115. ix := kx
  1116. iy := ky
  1117. for i := 0; i < n; i++ {
  1118. tmp1 := alpha * x[ix]
  1119. y[iy] += tmp1 * complex(real(ap[kk]), 0)
  1120. var tmp2 complex128
  1121. jx := ix
  1122. jy := iy
  1123. for k := kk + 1; k < kk+n-i; k++ {
  1124. jx += incX
  1125. jy += incY
  1126. y[jy] += tmp1 * cmplx.Conj(ap[k])
  1127. tmp2 += ap[k] * x[jx]
  1128. }
  1129. y[iy] += alpha * tmp2
  1130. ix += incX
  1131. iy += incY
  1132. kk += n - i
  1133. }
  1134. }
  1135. return
  1136. }
  1137. // Form y when ap contains the lower triangle.
  1138. // Here, kk points to the beginning of current row in ap.
  1139. if incX == 1 && incY == 1 {
  1140. for i := 0; i < n; i++ {
  1141. tmp1 := alpha * x[i]
  1142. var tmp2 complex128
  1143. k := kk
  1144. for j := 0; j < i; j++ {
  1145. y[j] += tmp1 * cmplx.Conj(ap[k])
  1146. tmp2 += ap[k] * x[j]
  1147. k++
  1148. }
  1149. aii := complex(real(ap[kk+i]), 0)
  1150. y[i] += tmp1*aii + alpha*tmp2
  1151. kk += i + 1
  1152. }
  1153. } else {
  1154. ix := kx
  1155. iy := ky
  1156. for i := 0; i < n; i++ {
  1157. tmp1 := alpha * x[ix]
  1158. var tmp2 complex128
  1159. jx := kx
  1160. jy := ky
  1161. for k := kk; k < kk+i; k++ {
  1162. y[jy] += tmp1 * cmplx.Conj(ap[k])
  1163. tmp2 += ap[k] * x[jx]
  1164. jx += incX
  1165. jy += incY
  1166. }
  1167. aii := complex(real(ap[kk+i]), 0)
  1168. y[iy] += tmp1*aii + alpha*tmp2
  1169. ix += incX
  1170. iy += incY
  1171. kk += i + 1
  1172. }
  1173. }
  1174. }
  1175. // Zhpr performs the Hermitian rank-1 operation
  1176. // A += alpha * x * xᴴ
  1177. // where alpha is a real scalar, x is a vector, and A is an n×n hermitian matrix
  1178. // in packed form. On entry, the imaginary parts of the diagonal elements are
  1179. // assumed to be zero, and on return they are set to zero.
  1180. func (Implementation) Zhpr(uplo blas.Uplo, n int, alpha float64, x []complex128, incX int, ap []complex128) {
  1181. switch uplo {
  1182. default:
  1183. panic(badUplo)
  1184. case blas.Upper, blas.Lower:
  1185. }
  1186. if n < 0 {
  1187. panic(nLT0)
  1188. }
  1189. if incX == 0 {
  1190. panic(zeroIncX)
  1191. }
  1192. // Quick return if possible.
  1193. if n == 0 {
  1194. return
  1195. }
  1196. // For zero matrix size the following slice length checks are trivially satisfied.
  1197. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  1198. panic(shortX)
  1199. }
  1200. if len(ap) < n*(n+1)/2 {
  1201. panic(shortAP)
  1202. }
  1203. // Quick return if possible.
  1204. if alpha == 0 {
  1205. return
  1206. }
  1207. // Set up start index in X.
  1208. var kx int
  1209. if incX < 0 {
  1210. kx = (1 - n) * incX
  1211. }
  1212. // The elements of A are accessed sequentially with one pass through ap.
  1213. var kk int
  1214. if uplo == blas.Upper {
  1215. // Form A when upper triangle is stored in AP.
  1216. // Here, kk points to the current diagonal element in ap.
  1217. if incX == 1 {
  1218. for i := 0; i < n; i++ {
  1219. xi := x[i]
  1220. if xi != 0 {
  1221. aii := real(ap[kk]) + alpha*real(cmplx.Conj(xi)*xi)
  1222. ap[kk] = complex(aii, 0)
  1223. tmp := complex(alpha, 0) * xi
  1224. a := ap[kk+1 : kk+n-i]
  1225. x := x[i+1 : n]
  1226. for j, v := range x {
  1227. a[j] += tmp * cmplx.Conj(v)
  1228. }
  1229. } else {
  1230. ap[kk] = complex(real(ap[kk]), 0)
  1231. }
  1232. kk += n - i
  1233. }
  1234. } else {
  1235. ix := kx
  1236. for i := 0; i < n; i++ {
  1237. xi := x[ix]
  1238. if xi != 0 {
  1239. aii := real(ap[kk]) + alpha*real(cmplx.Conj(xi)*xi)
  1240. ap[kk] = complex(aii, 0)
  1241. tmp := complex(alpha, 0) * xi
  1242. jx := ix + incX
  1243. a := ap[kk+1 : kk+n-i]
  1244. for k := range a {
  1245. a[k] += tmp * cmplx.Conj(x[jx])
  1246. jx += incX
  1247. }
  1248. } else {
  1249. ap[kk] = complex(real(ap[kk]), 0)
  1250. }
  1251. ix += incX
  1252. kk += n - i
  1253. }
  1254. }
  1255. return
  1256. }
  1257. // Form A when lower triangle is stored in AP.
  1258. // Here, kk points to the beginning of current row in ap.
  1259. if incX == 1 {
  1260. for i := 0; i < n; i++ {
  1261. xi := x[i]
  1262. if xi != 0 {
  1263. tmp := complex(alpha, 0) * xi
  1264. a := ap[kk : kk+i]
  1265. for j, v := range x[:i] {
  1266. a[j] += tmp * cmplx.Conj(v)
  1267. }
  1268. aii := real(ap[kk+i]) + alpha*real(cmplx.Conj(xi)*xi)
  1269. ap[kk+i] = complex(aii, 0)
  1270. } else {
  1271. ap[kk+i] = complex(real(ap[kk+i]), 0)
  1272. }
  1273. kk += i + 1
  1274. }
  1275. } else {
  1276. ix := kx
  1277. for i := 0; i < n; i++ {
  1278. xi := x[ix]
  1279. if xi != 0 {
  1280. tmp := complex(alpha, 0) * xi
  1281. a := ap[kk : kk+i]
  1282. jx := kx
  1283. for k := range a {
  1284. a[k] += tmp * cmplx.Conj(x[jx])
  1285. jx += incX
  1286. }
  1287. aii := real(ap[kk+i]) + alpha*real(cmplx.Conj(xi)*xi)
  1288. ap[kk+i] = complex(aii, 0)
  1289. } else {
  1290. ap[kk+i] = complex(real(ap[kk+i]), 0)
  1291. }
  1292. ix += incX
  1293. kk += i + 1
  1294. }
  1295. }
  1296. }
  1297. // Zhpr2 performs the Hermitian rank-2 operation
  1298. // A += alpha * x * yᴴ + conj(alpha) * y * xᴴ
  1299. // where alpha is a complex scalar, x and y are n element vectors, and A is an
  1300. // n×n Hermitian matrix, supplied in packed form. On entry, the imaginary parts
  1301. // of the diagonal elements are assumed to be zero, and on return they are set to zero.
  1302. func (Implementation) Zhpr2(uplo blas.Uplo, n int, alpha complex128, x []complex128, incX int, y []complex128, incY int, ap []complex128) {
  1303. switch uplo {
  1304. default:
  1305. panic(badUplo)
  1306. case blas.Upper, blas.Lower:
  1307. }
  1308. if n < 0 {
  1309. panic(nLT0)
  1310. }
  1311. if incX == 0 {
  1312. panic(zeroIncX)
  1313. }
  1314. if incY == 0 {
  1315. panic(zeroIncY)
  1316. }
  1317. // Quick return if possible.
  1318. if n == 0 {
  1319. return
  1320. }
  1321. // For zero matrix size the following slice length checks are trivially satisfied.
  1322. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  1323. panic(shortX)
  1324. }
  1325. if (incY > 0 && len(y) <= (n-1)*incY) || (incY < 0 && len(y) <= (1-n)*incY) {
  1326. panic(shortY)
  1327. }
  1328. if len(ap) < n*(n+1)/2 {
  1329. panic(shortAP)
  1330. }
  1331. // Quick return if possible.
  1332. if alpha == 0 {
  1333. return
  1334. }
  1335. // Set up start indices in X and Y.
  1336. var kx int
  1337. if incX < 0 {
  1338. kx = (1 - n) * incX
  1339. }
  1340. var ky int
  1341. if incY < 0 {
  1342. ky = (1 - n) * incY
  1343. }
  1344. // The elements of A are accessed sequentially with one pass through ap.
  1345. var kk int
  1346. if uplo == blas.Upper {
  1347. // Form A when upper triangle is stored in AP.
  1348. // Here, kk points to the current diagonal element in ap.
  1349. if incX == 1 && incY == 1 {
  1350. for i := 0; i < n; i++ {
  1351. if x[i] != 0 || y[i] != 0 {
  1352. tmp1 := alpha * x[i]
  1353. tmp2 := cmplx.Conj(alpha) * y[i]
  1354. aii := real(ap[kk]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
  1355. ap[kk] = complex(aii, 0)
  1356. k := kk + 1
  1357. for j := i + 1; j < n; j++ {
  1358. ap[k] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
  1359. k++
  1360. }
  1361. } else {
  1362. ap[kk] = complex(real(ap[kk]), 0)
  1363. }
  1364. kk += n - i
  1365. }
  1366. } else {
  1367. ix := kx
  1368. iy := ky
  1369. for i := 0; i < n; i++ {
  1370. if x[ix] != 0 || y[iy] != 0 {
  1371. tmp1 := alpha * x[ix]
  1372. tmp2 := cmplx.Conj(alpha) * y[iy]
  1373. aii := real(ap[kk]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
  1374. ap[kk] = complex(aii, 0)
  1375. jx := ix + incX
  1376. jy := iy + incY
  1377. for k := kk + 1; k < kk+n-i; k++ {
  1378. ap[k] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
  1379. jx += incX
  1380. jy += incY
  1381. }
  1382. } else {
  1383. ap[kk] = complex(real(ap[kk]), 0)
  1384. }
  1385. ix += incX
  1386. iy += incY
  1387. kk += n - i
  1388. }
  1389. }
  1390. return
  1391. }
  1392. // Form A when lower triangle is stored in AP.
  1393. // Here, kk points to the beginning of current row in ap.
  1394. if incX == 1 && incY == 1 {
  1395. for i := 0; i < n; i++ {
  1396. if x[i] != 0 || y[i] != 0 {
  1397. tmp1 := alpha * x[i]
  1398. tmp2 := cmplx.Conj(alpha) * y[i]
  1399. k := kk
  1400. for j := 0; j < i; j++ {
  1401. ap[k] += tmp1*cmplx.Conj(y[j]) + tmp2*cmplx.Conj(x[j])
  1402. k++
  1403. }
  1404. aii := real(ap[kk+i]) + real(tmp1*cmplx.Conj(y[i])) + real(tmp2*cmplx.Conj(x[i]))
  1405. ap[kk+i] = complex(aii, 0)
  1406. } else {
  1407. ap[kk+i] = complex(real(ap[kk+i]), 0)
  1408. }
  1409. kk += i + 1
  1410. }
  1411. } else {
  1412. ix := kx
  1413. iy := ky
  1414. for i := 0; i < n; i++ {
  1415. if x[ix] != 0 || y[iy] != 0 {
  1416. tmp1 := alpha * x[ix]
  1417. tmp2 := cmplx.Conj(alpha) * y[iy]
  1418. jx := kx
  1419. jy := ky
  1420. for k := kk; k < kk+i; k++ {
  1421. ap[k] += tmp1*cmplx.Conj(y[jy]) + tmp2*cmplx.Conj(x[jx])
  1422. jx += incX
  1423. jy += incY
  1424. }
  1425. aii := real(ap[kk+i]) + real(tmp1*cmplx.Conj(y[iy])) + real(tmp2*cmplx.Conj(x[ix]))
  1426. ap[kk+i] = complex(aii, 0)
  1427. } else {
  1428. ap[kk+i] = complex(real(ap[kk+i]), 0)
  1429. }
  1430. ix += incX
  1431. iy += incY
  1432. kk += i + 1
  1433. }
  1434. }
  1435. }
  1436. // Ztbmv performs one of the matrix-vector operations
  1437. // x = A * x if trans = blas.NoTrans
  1438. // x = Aᵀ * x if trans = blas.Trans
  1439. // x = Aᴴ * x if trans = blas.ConjTrans
  1440. // where x is an n element vector and A is an n×n triangular band matrix, with
  1441. // (k+1) diagonals.
  1442. func (Implementation) Ztbmv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, k int, a []complex128, lda int, x []complex128, incX int) {
  1443. switch trans {
  1444. default:
  1445. panic(badTranspose)
  1446. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  1447. }
  1448. switch uplo {
  1449. default:
  1450. panic(badUplo)
  1451. case blas.Upper, blas.Lower:
  1452. }
  1453. switch diag {
  1454. default:
  1455. panic(badDiag)
  1456. case blas.NonUnit, blas.Unit:
  1457. }
  1458. if n < 0 {
  1459. panic(nLT0)
  1460. }
  1461. if k < 0 {
  1462. panic(kLT0)
  1463. }
  1464. if lda < k+1 {
  1465. panic(badLdA)
  1466. }
  1467. if incX == 0 {
  1468. panic(zeroIncX)
  1469. }
  1470. // Quick return if possible.
  1471. if n == 0 {
  1472. return
  1473. }
  1474. // For zero matrix size the following slice length checks are trivially satisfied.
  1475. if len(a) < lda*(n-1)+k+1 {
  1476. panic(shortA)
  1477. }
  1478. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  1479. panic(shortX)
  1480. }
  1481. // Set up start index in X.
  1482. var kx int
  1483. if incX < 0 {
  1484. kx = (1 - n) * incX
  1485. }
  1486. switch trans {
  1487. case blas.NoTrans:
  1488. if uplo == blas.Upper {
  1489. if incX == 1 {
  1490. for i := 0; i < n; i++ {
  1491. xi := x[i]
  1492. if diag == blas.NonUnit {
  1493. xi *= a[i*lda]
  1494. }
  1495. kk := min(k, n-i-1)
  1496. for j, aij := range a[i*lda+1 : i*lda+kk+1] {
  1497. xi += x[i+j+1] * aij
  1498. }
  1499. x[i] = xi
  1500. }
  1501. } else {
  1502. ix := kx
  1503. for i := 0; i < n; i++ {
  1504. xi := x[ix]
  1505. if diag == blas.NonUnit {
  1506. xi *= a[i*lda]
  1507. }
  1508. kk := min(k, n-i-1)
  1509. jx := ix + incX
  1510. for _, aij := range a[i*lda+1 : i*lda+kk+1] {
  1511. xi += x[jx] * aij
  1512. jx += incX
  1513. }
  1514. x[ix] = xi
  1515. ix += incX
  1516. }
  1517. }
  1518. } else {
  1519. if incX == 1 {
  1520. for i := n - 1; i >= 0; i-- {
  1521. xi := x[i]
  1522. if diag == blas.NonUnit {
  1523. xi *= a[i*lda+k]
  1524. }
  1525. kk := min(k, i)
  1526. for j, aij := range a[i*lda+k-kk : i*lda+k] {
  1527. xi += x[i-kk+j] * aij
  1528. }
  1529. x[i] = xi
  1530. }
  1531. } else {
  1532. ix := kx + (n-1)*incX
  1533. for i := n - 1; i >= 0; i-- {
  1534. xi := x[ix]
  1535. if diag == blas.NonUnit {
  1536. xi *= a[i*lda+k]
  1537. }
  1538. kk := min(k, i)
  1539. jx := ix - kk*incX
  1540. for _, aij := range a[i*lda+k-kk : i*lda+k] {
  1541. xi += x[jx] * aij
  1542. jx += incX
  1543. }
  1544. x[ix] = xi
  1545. ix -= incX
  1546. }
  1547. }
  1548. }
  1549. case blas.Trans:
  1550. if uplo == blas.Upper {
  1551. if incX == 1 {
  1552. for i := n - 1; i >= 0; i-- {
  1553. kk := min(k, n-i-1)
  1554. xi := x[i]
  1555. for j, aij := range a[i*lda+1 : i*lda+kk+1] {
  1556. x[i+j+1] += xi * aij
  1557. }
  1558. if diag == blas.NonUnit {
  1559. x[i] *= a[i*lda]
  1560. }
  1561. }
  1562. } else {
  1563. ix := kx + (n-1)*incX
  1564. for i := n - 1; i >= 0; i-- {
  1565. kk := min(k, n-i-1)
  1566. jx := ix + incX
  1567. xi := x[ix]
  1568. for _, aij := range a[i*lda+1 : i*lda+kk+1] {
  1569. x[jx] += xi * aij
  1570. jx += incX
  1571. }
  1572. if diag == blas.NonUnit {
  1573. x[ix] *= a[i*lda]
  1574. }
  1575. ix -= incX
  1576. }
  1577. }
  1578. } else {
  1579. if incX == 1 {
  1580. for i := 0; i < n; i++ {
  1581. kk := min(k, i)
  1582. xi := x[i]
  1583. for j, aij := range a[i*lda+k-kk : i*lda+k] {
  1584. x[i-kk+j] += xi * aij
  1585. }
  1586. if diag == blas.NonUnit {
  1587. x[i] *= a[i*lda+k]
  1588. }
  1589. }
  1590. } else {
  1591. ix := kx
  1592. for i := 0; i < n; i++ {
  1593. kk := min(k, i)
  1594. jx := ix - kk*incX
  1595. xi := x[ix]
  1596. for _, aij := range a[i*lda+k-kk : i*lda+k] {
  1597. x[jx] += xi * aij
  1598. jx += incX
  1599. }
  1600. if diag == blas.NonUnit {
  1601. x[ix] *= a[i*lda+k]
  1602. }
  1603. ix += incX
  1604. }
  1605. }
  1606. }
  1607. case blas.ConjTrans:
  1608. if uplo == blas.Upper {
  1609. if incX == 1 {
  1610. for i := n - 1; i >= 0; i-- {
  1611. kk := min(k, n-i-1)
  1612. xi := x[i]
  1613. for j, aij := range a[i*lda+1 : i*lda+kk+1] {
  1614. x[i+j+1] += xi * cmplx.Conj(aij)
  1615. }
  1616. if diag == blas.NonUnit {
  1617. x[i] *= cmplx.Conj(a[i*lda])
  1618. }
  1619. }
  1620. } else {
  1621. ix := kx + (n-1)*incX
  1622. for i := n - 1; i >= 0; i-- {
  1623. kk := min(k, n-i-1)
  1624. jx := ix + incX
  1625. xi := x[ix]
  1626. for _, aij := range a[i*lda+1 : i*lda+kk+1] {
  1627. x[jx] += xi * cmplx.Conj(aij)
  1628. jx += incX
  1629. }
  1630. if diag == blas.NonUnit {
  1631. x[ix] *= cmplx.Conj(a[i*lda])
  1632. }
  1633. ix -= incX
  1634. }
  1635. }
  1636. } else {
  1637. if incX == 1 {
  1638. for i := 0; i < n; i++ {
  1639. kk := min(k, i)
  1640. xi := x[i]
  1641. for j, aij := range a[i*lda+k-kk : i*lda+k] {
  1642. x[i-kk+j] += xi * cmplx.Conj(aij)
  1643. }
  1644. if diag == blas.NonUnit {
  1645. x[i] *= cmplx.Conj(a[i*lda+k])
  1646. }
  1647. }
  1648. } else {
  1649. ix := kx
  1650. for i := 0; i < n; i++ {
  1651. kk := min(k, i)
  1652. jx := ix - kk*incX
  1653. xi := x[ix]
  1654. for _, aij := range a[i*lda+k-kk : i*lda+k] {
  1655. x[jx] += xi * cmplx.Conj(aij)
  1656. jx += incX
  1657. }
  1658. if diag == blas.NonUnit {
  1659. x[ix] *= cmplx.Conj(a[i*lda+k])
  1660. }
  1661. ix += incX
  1662. }
  1663. }
  1664. }
  1665. }
  1666. }
  1667. // Ztbsv solves one of the systems of equations
  1668. // A * x = b if trans == blas.NoTrans
  1669. // Aᵀ * x = b if trans == blas.Trans
  1670. // Aᴴ * x = b if trans == blas.ConjTrans
  1671. // where b and x are n element vectors and A is an n×n triangular band matrix
  1672. // with (k+1) diagonals.
  1673. //
  1674. // On entry, x contains the values of b, and the solution is
  1675. // stored in-place into x.
  1676. //
  1677. // No test for singularity or near-singularity is included in this
  1678. // routine. Such tests must be performed before calling this routine.
  1679. func (Implementation) Ztbsv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, k int, a []complex128, lda int, x []complex128, incX int) {
  1680. switch trans {
  1681. default:
  1682. panic(badTranspose)
  1683. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  1684. }
  1685. switch uplo {
  1686. default:
  1687. panic(badUplo)
  1688. case blas.Upper, blas.Lower:
  1689. }
  1690. switch diag {
  1691. default:
  1692. panic(badDiag)
  1693. case blas.NonUnit, blas.Unit:
  1694. }
  1695. if n < 0 {
  1696. panic(nLT0)
  1697. }
  1698. if k < 0 {
  1699. panic(kLT0)
  1700. }
  1701. if lda < k+1 {
  1702. panic(badLdA)
  1703. }
  1704. if incX == 0 {
  1705. panic(zeroIncX)
  1706. }
  1707. // Quick return if possible.
  1708. if n == 0 {
  1709. return
  1710. }
  1711. // For zero matrix size the following slice length checks are trivially satisfied.
  1712. if len(a) < lda*(n-1)+k+1 {
  1713. panic(shortA)
  1714. }
  1715. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  1716. panic(shortX)
  1717. }
  1718. // Set up start index in X.
  1719. var kx int
  1720. if incX < 0 {
  1721. kx = (1 - n) * incX
  1722. }
  1723. switch trans {
  1724. case blas.NoTrans:
  1725. if uplo == blas.Upper {
  1726. if incX == 1 {
  1727. for i := n - 1; i >= 0; i-- {
  1728. kk := min(k, n-i-1)
  1729. var sum complex128
  1730. for j, aij := range a[i*lda+1 : i*lda+kk+1] {
  1731. sum += x[i+1+j] * aij
  1732. }
  1733. x[i] -= sum
  1734. if diag == blas.NonUnit {
  1735. x[i] /= a[i*lda]
  1736. }
  1737. }
  1738. } else {
  1739. ix := kx + (n-1)*incX
  1740. for i := n - 1; i >= 0; i-- {
  1741. kk := min(k, n-i-1)
  1742. var sum complex128
  1743. jx := ix + incX
  1744. for _, aij := range a[i*lda+1 : i*lda+kk+1] {
  1745. sum += x[jx] * aij
  1746. jx += incX
  1747. }
  1748. x[ix] -= sum
  1749. if diag == blas.NonUnit {
  1750. x[ix] /= a[i*lda]
  1751. }
  1752. ix -= incX
  1753. }
  1754. }
  1755. } else {
  1756. if incX == 1 {
  1757. for i := 0; i < n; i++ {
  1758. kk := min(k, i)
  1759. var sum complex128
  1760. for j, aij := range a[i*lda+k-kk : i*lda+k] {
  1761. sum += x[i-kk+j] * aij
  1762. }
  1763. x[i] -= sum
  1764. if diag == blas.NonUnit {
  1765. x[i] /= a[i*lda+k]
  1766. }
  1767. }
  1768. } else {
  1769. ix := kx
  1770. for i := 0; i < n; i++ {
  1771. kk := min(k, i)
  1772. var sum complex128
  1773. jx := ix - kk*incX
  1774. for _, aij := range a[i*lda+k-kk : i*lda+k] {
  1775. sum += x[jx] * aij
  1776. jx += incX
  1777. }
  1778. x[ix] -= sum
  1779. if diag == blas.NonUnit {
  1780. x[ix] /= a[i*lda+k]
  1781. }
  1782. ix += incX
  1783. }
  1784. }
  1785. }
  1786. case blas.Trans:
  1787. if uplo == blas.Upper {
  1788. if incX == 1 {
  1789. for i := 0; i < n; i++ {
  1790. if diag == blas.NonUnit {
  1791. x[i] /= a[i*lda]
  1792. }
  1793. kk := min(k, n-i-1)
  1794. xi := x[i]
  1795. for j, aij := range a[i*lda+1 : i*lda+kk+1] {
  1796. x[i+1+j] -= xi * aij
  1797. }
  1798. }
  1799. } else {
  1800. ix := kx
  1801. for i := 0; i < n; i++ {
  1802. if diag == blas.NonUnit {
  1803. x[ix] /= a[i*lda]
  1804. }
  1805. kk := min(k, n-i-1)
  1806. xi := x[ix]
  1807. jx := ix + incX
  1808. for _, aij := range a[i*lda+1 : i*lda+kk+1] {
  1809. x[jx] -= xi * aij
  1810. jx += incX
  1811. }
  1812. ix += incX
  1813. }
  1814. }
  1815. } else {
  1816. if incX == 1 {
  1817. for i := n - 1; i >= 0; i-- {
  1818. if diag == blas.NonUnit {
  1819. x[i] /= a[i*lda+k]
  1820. }
  1821. kk := min(k, i)
  1822. xi := x[i]
  1823. for j, aij := range a[i*lda+k-kk : i*lda+k] {
  1824. x[i-kk+j] -= xi * aij
  1825. }
  1826. }
  1827. } else {
  1828. ix := kx + (n-1)*incX
  1829. for i := n - 1; i >= 0; i-- {
  1830. if diag == blas.NonUnit {
  1831. x[ix] /= a[i*lda+k]
  1832. }
  1833. kk := min(k, i)
  1834. xi := x[ix]
  1835. jx := ix - kk*incX
  1836. for _, aij := range a[i*lda+k-kk : i*lda+k] {
  1837. x[jx] -= xi * aij
  1838. jx += incX
  1839. }
  1840. ix -= incX
  1841. }
  1842. }
  1843. }
  1844. case blas.ConjTrans:
  1845. if uplo == blas.Upper {
  1846. if incX == 1 {
  1847. for i := 0; i < n; i++ {
  1848. if diag == blas.NonUnit {
  1849. x[i] /= cmplx.Conj(a[i*lda])
  1850. }
  1851. kk := min(k, n-i-1)
  1852. xi := x[i]
  1853. for j, aij := range a[i*lda+1 : i*lda+kk+1] {
  1854. x[i+1+j] -= xi * cmplx.Conj(aij)
  1855. }
  1856. }
  1857. } else {
  1858. ix := kx
  1859. for i := 0; i < n; i++ {
  1860. if diag == blas.NonUnit {
  1861. x[ix] /= cmplx.Conj(a[i*lda])
  1862. }
  1863. kk := min(k, n-i-1)
  1864. xi := x[ix]
  1865. jx := ix + incX
  1866. for _, aij := range a[i*lda+1 : i*lda+kk+1] {
  1867. x[jx] -= xi * cmplx.Conj(aij)
  1868. jx += incX
  1869. }
  1870. ix += incX
  1871. }
  1872. }
  1873. } else {
  1874. if incX == 1 {
  1875. for i := n - 1; i >= 0; i-- {
  1876. if diag == blas.NonUnit {
  1877. x[i] /= cmplx.Conj(a[i*lda+k])
  1878. }
  1879. kk := min(k, i)
  1880. xi := x[i]
  1881. for j, aij := range a[i*lda+k-kk : i*lda+k] {
  1882. x[i-kk+j] -= xi * cmplx.Conj(aij)
  1883. }
  1884. }
  1885. } else {
  1886. ix := kx + (n-1)*incX
  1887. for i := n - 1; i >= 0; i-- {
  1888. if diag == blas.NonUnit {
  1889. x[ix] /= cmplx.Conj(a[i*lda+k])
  1890. }
  1891. kk := min(k, i)
  1892. xi := x[ix]
  1893. jx := ix - kk*incX
  1894. for _, aij := range a[i*lda+k-kk : i*lda+k] {
  1895. x[jx] -= xi * cmplx.Conj(aij)
  1896. jx += incX
  1897. }
  1898. ix -= incX
  1899. }
  1900. }
  1901. }
  1902. }
  1903. }
  1904. // Ztpmv performs one of the matrix-vector operations
  1905. // x = A * x if trans = blas.NoTrans
  1906. // x = Aᵀ * x if trans = blas.Trans
  1907. // x = Aᴴ * x if trans = blas.ConjTrans
  1908. // where x is an n element vector and A is an n×n triangular matrix, supplied in
  1909. // packed form.
  1910. func (Implementation) Ztpmv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, ap []complex128, x []complex128, incX int) {
  1911. switch uplo {
  1912. default:
  1913. panic(badUplo)
  1914. case blas.Upper, blas.Lower:
  1915. }
  1916. switch trans {
  1917. default:
  1918. panic(badTranspose)
  1919. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  1920. }
  1921. switch diag {
  1922. default:
  1923. panic(badDiag)
  1924. case blas.NonUnit, blas.Unit:
  1925. }
  1926. if n < 0 {
  1927. panic(nLT0)
  1928. }
  1929. if incX == 0 {
  1930. panic(zeroIncX)
  1931. }
  1932. // Quick return if possible.
  1933. if n == 0 {
  1934. return
  1935. }
  1936. // For zero matrix size the following slice length checks are trivially satisfied.
  1937. if len(ap) < n*(n+1)/2 {
  1938. panic(shortAP)
  1939. }
  1940. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  1941. panic(shortX)
  1942. }
  1943. // Set up start index in X.
  1944. var kx int
  1945. if incX < 0 {
  1946. kx = (1 - n) * incX
  1947. }
  1948. // The elements of A are accessed sequentially with one pass through A.
  1949. if trans == blas.NoTrans {
  1950. // Form x = A*x.
  1951. if uplo == blas.Upper {
  1952. // kk points to the current diagonal element in ap.
  1953. kk := 0
  1954. if incX == 1 {
  1955. x = x[:n]
  1956. for i := range x {
  1957. if diag == blas.NonUnit {
  1958. x[i] *= ap[kk]
  1959. }
  1960. if n-i-1 > 0 {
  1961. x[i] += c128.DotuUnitary(ap[kk+1:kk+n-i], x[i+1:])
  1962. }
  1963. kk += n - i
  1964. }
  1965. } else {
  1966. ix := kx
  1967. for i := 0; i < n; i++ {
  1968. if diag == blas.NonUnit {
  1969. x[ix] *= ap[kk]
  1970. }
  1971. if n-i-1 > 0 {
  1972. x[ix] += c128.DotuInc(ap[kk+1:kk+n-i], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
  1973. }
  1974. ix += incX
  1975. kk += n - i
  1976. }
  1977. }
  1978. } else {
  1979. // kk points to the beginning of current row in ap.
  1980. kk := n*(n+1)/2 - n
  1981. if incX == 1 {
  1982. for i := n - 1; i >= 0; i-- {
  1983. if diag == blas.NonUnit {
  1984. x[i] *= ap[kk+i]
  1985. }
  1986. if i > 0 {
  1987. x[i] += c128.DotuUnitary(ap[kk:kk+i], x[:i])
  1988. }
  1989. kk -= i
  1990. }
  1991. } else {
  1992. ix := kx + (n-1)*incX
  1993. for i := n - 1; i >= 0; i-- {
  1994. if diag == blas.NonUnit {
  1995. x[ix] *= ap[kk+i]
  1996. }
  1997. if i > 0 {
  1998. x[ix] += c128.DotuInc(ap[kk:kk+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
  1999. }
  2000. ix -= incX
  2001. kk -= i
  2002. }
  2003. }
  2004. }
  2005. return
  2006. }
  2007. if trans == blas.Trans {
  2008. // Form x = Aᵀ*x.
  2009. if uplo == blas.Upper {
  2010. // kk points to the current diagonal element in ap.
  2011. kk := n*(n+1)/2 - 1
  2012. if incX == 1 {
  2013. for i := n - 1; i >= 0; i-- {
  2014. xi := x[i]
  2015. if diag == blas.NonUnit {
  2016. x[i] *= ap[kk]
  2017. }
  2018. if n-i-1 > 0 {
  2019. c128.AxpyUnitary(xi, ap[kk+1:kk+n-i], x[i+1:n])
  2020. }
  2021. kk -= n - i + 1
  2022. }
  2023. } else {
  2024. ix := kx + (n-1)*incX
  2025. for i := n - 1; i >= 0; i-- {
  2026. xi := x[ix]
  2027. if diag == blas.NonUnit {
  2028. x[ix] *= ap[kk]
  2029. }
  2030. if n-i-1 > 0 {
  2031. c128.AxpyInc(xi, ap[kk+1:kk+n-i], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
  2032. }
  2033. ix -= incX
  2034. kk -= n - i + 1
  2035. }
  2036. }
  2037. } else {
  2038. // kk points to the beginning of current row in ap.
  2039. kk := 0
  2040. if incX == 1 {
  2041. x = x[:n]
  2042. for i := range x {
  2043. if i > 0 {
  2044. c128.AxpyUnitary(x[i], ap[kk:kk+i], x[:i])
  2045. }
  2046. if diag == blas.NonUnit {
  2047. x[i] *= ap[kk+i]
  2048. }
  2049. kk += i + 1
  2050. }
  2051. } else {
  2052. ix := kx
  2053. for i := 0; i < n; i++ {
  2054. if i > 0 {
  2055. c128.AxpyInc(x[ix], ap[kk:kk+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
  2056. }
  2057. if diag == blas.NonUnit {
  2058. x[ix] *= ap[kk+i]
  2059. }
  2060. ix += incX
  2061. kk += i + 1
  2062. }
  2063. }
  2064. }
  2065. return
  2066. }
  2067. // Form x = Aᴴ*x.
  2068. if uplo == blas.Upper {
  2069. // kk points to the current diagonal element in ap.
  2070. kk := n*(n+1)/2 - 1
  2071. if incX == 1 {
  2072. for i := n - 1; i >= 0; i-- {
  2073. xi := x[i]
  2074. if diag == blas.NonUnit {
  2075. x[i] *= cmplx.Conj(ap[kk])
  2076. }
  2077. k := kk + 1
  2078. for j := i + 1; j < n; j++ {
  2079. x[j] += xi * cmplx.Conj(ap[k])
  2080. k++
  2081. }
  2082. kk -= n - i + 1
  2083. }
  2084. } else {
  2085. ix := kx + (n-1)*incX
  2086. for i := n - 1; i >= 0; i-- {
  2087. xi := x[ix]
  2088. if diag == blas.NonUnit {
  2089. x[ix] *= cmplx.Conj(ap[kk])
  2090. }
  2091. jx := ix + incX
  2092. k := kk + 1
  2093. for j := i + 1; j < n; j++ {
  2094. x[jx] += xi * cmplx.Conj(ap[k])
  2095. jx += incX
  2096. k++
  2097. }
  2098. ix -= incX
  2099. kk -= n - i + 1
  2100. }
  2101. }
  2102. } else {
  2103. // kk points to the beginning of current row in ap.
  2104. kk := 0
  2105. if incX == 1 {
  2106. x = x[:n]
  2107. for i, xi := range x {
  2108. for j := 0; j < i; j++ {
  2109. x[j] += xi * cmplx.Conj(ap[kk+j])
  2110. }
  2111. if diag == blas.NonUnit {
  2112. x[i] *= cmplx.Conj(ap[kk+i])
  2113. }
  2114. kk += i + 1
  2115. }
  2116. } else {
  2117. ix := kx
  2118. for i := 0; i < n; i++ {
  2119. xi := x[ix]
  2120. jx := kx
  2121. for j := 0; j < i; j++ {
  2122. x[jx] += xi * cmplx.Conj(ap[kk+j])
  2123. jx += incX
  2124. }
  2125. if diag == blas.NonUnit {
  2126. x[ix] *= cmplx.Conj(ap[kk+i])
  2127. }
  2128. ix += incX
  2129. kk += i + 1
  2130. }
  2131. }
  2132. }
  2133. }
  2134. // Ztpsv solves one of the systems of equations
  2135. // A * x = b if trans == blas.NoTrans
  2136. // Aᵀ * x = b if trans == blas.Trans
  2137. // Aᴴ * x = b if trans == blas.ConjTrans
  2138. // where b and x are n element vectors and A is an n×n triangular matrix in
  2139. // packed form.
  2140. //
  2141. // On entry, x contains the values of b, and the solution is
  2142. // stored in-place into x.
  2143. //
  2144. // No test for singularity or near-singularity is included in this
  2145. // routine. Such tests must be performed before calling this routine.
  2146. func (Implementation) Ztpsv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, ap []complex128, x []complex128, incX int) {
  2147. switch uplo {
  2148. default:
  2149. panic(badUplo)
  2150. case blas.Upper, blas.Lower:
  2151. }
  2152. switch trans {
  2153. default:
  2154. panic(badTranspose)
  2155. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  2156. }
  2157. switch diag {
  2158. default:
  2159. panic(badDiag)
  2160. case blas.NonUnit, blas.Unit:
  2161. }
  2162. if n < 0 {
  2163. panic(nLT0)
  2164. }
  2165. if incX == 0 {
  2166. panic(zeroIncX)
  2167. }
  2168. // Quick return if possible.
  2169. if n == 0 {
  2170. return
  2171. }
  2172. // For zero matrix size the following slice length checks are trivially satisfied.
  2173. if len(ap) < n*(n+1)/2 {
  2174. panic(shortAP)
  2175. }
  2176. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  2177. panic(shortX)
  2178. }
  2179. // Set up start index in X.
  2180. var kx int
  2181. if incX < 0 {
  2182. kx = (1 - n) * incX
  2183. }
  2184. // The elements of A are accessed sequentially with one pass through ap.
  2185. if trans == blas.NoTrans {
  2186. // Form x = inv(A)*x.
  2187. if uplo == blas.Upper {
  2188. kk := n*(n+1)/2 - 1
  2189. if incX == 1 {
  2190. for i := n - 1; i >= 0; i-- {
  2191. aii := ap[kk]
  2192. if n-i-1 > 0 {
  2193. x[i] -= c128.DotuUnitary(x[i+1:n], ap[kk+1:kk+n-i])
  2194. }
  2195. if diag == blas.NonUnit {
  2196. x[i] /= aii
  2197. }
  2198. kk -= n - i + 1
  2199. }
  2200. } else {
  2201. ix := kx + (n-1)*incX
  2202. for i := n - 1; i >= 0; i-- {
  2203. aii := ap[kk]
  2204. if n-i-1 > 0 {
  2205. x[ix] -= c128.DotuInc(x, ap[kk+1:kk+n-i], uintptr(n-i-1), uintptr(incX), 1, uintptr(ix+incX), 0)
  2206. }
  2207. if diag == blas.NonUnit {
  2208. x[ix] /= aii
  2209. }
  2210. ix -= incX
  2211. kk -= n - i + 1
  2212. }
  2213. }
  2214. } else {
  2215. kk := 0
  2216. if incX == 1 {
  2217. for i := 0; i < n; i++ {
  2218. if i > 0 {
  2219. x[i] -= c128.DotuUnitary(x[:i], ap[kk:kk+i])
  2220. }
  2221. if diag == blas.NonUnit {
  2222. x[i] /= ap[kk+i]
  2223. }
  2224. kk += i + 1
  2225. }
  2226. } else {
  2227. ix := kx
  2228. for i := 0; i < n; i++ {
  2229. if i > 0 {
  2230. x[ix] -= c128.DotuInc(x, ap[kk:kk+i], uintptr(i), uintptr(incX), 1, uintptr(kx), 0)
  2231. }
  2232. if diag == blas.NonUnit {
  2233. x[ix] /= ap[kk+i]
  2234. }
  2235. ix += incX
  2236. kk += i + 1
  2237. }
  2238. }
  2239. }
  2240. return
  2241. }
  2242. if trans == blas.Trans {
  2243. // Form x = inv(Aᵀ)*x.
  2244. if uplo == blas.Upper {
  2245. kk := 0
  2246. if incX == 1 {
  2247. for j := 0; j < n; j++ {
  2248. if diag == blas.NonUnit {
  2249. x[j] /= ap[kk]
  2250. }
  2251. if n-j-1 > 0 {
  2252. c128.AxpyUnitary(-x[j], ap[kk+1:kk+n-j], x[j+1:n])
  2253. }
  2254. kk += n - j
  2255. }
  2256. } else {
  2257. jx := kx
  2258. for j := 0; j < n; j++ {
  2259. if diag == blas.NonUnit {
  2260. x[jx] /= ap[kk]
  2261. }
  2262. if n-j-1 > 0 {
  2263. c128.AxpyInc(-x[jx], ap[kk+1:kk+n-j], x, uintptr(n-j-1), 1, uintptr(incX), 0, uintptr(jx+incX))
  2264. }
  2265. jx += incX
  2266. kk += n - j
  2267. }
  2268. }
  2269. } else {
  2270. kk := n*(n+1)/2 - n
  2271. if incX == 1 {
  2272. for j := n - 1; j >= 0; j-- {
  2273. if diag == blas.NonUnit {
  2274. x[j] /= ap[kk+j]
  2275. }
  2276. if j > 0 {
  2277. c128.AxpyUnitary(-x[j], ap[kk:kk+j], x[:j])
  2278. }
  2279. kk -= j
  2280. }
  2281. } else {
  2282. jx := kx + (n-1)*incX
  2283. for j := n - 1; j >= 0; j-- {
  2284. if diag == blas.NonUnit {
  2285. x[jx] /= ap[kk+j]
  2286. }
  2287. if j > 0 {
  2288. c128.AxpyInc(-x[jx], ap[kk:kk+j], x, uintptr(j), 1, uintptr(incX), 0, uintptr(kx))
  2289. }
  2290. jx -= incX
  2291. kk -= j
  2292. }
  2293. }
  2294. }
  2295. return
  2296. }
  2297. // Form x = inv(Aᴴ)*x.
  2298. if uplo == blas.Upper {
  2299. kk := 0
  2300. if incX == 1 {
  2301. for j := 0; j < n; j++ {
  2302. if diag == blas.NonUnit {
  2303. x[j] /= cmplx.Conj(ap[kk])
  2304. }
  2305. xj := x[j]
  2306. k := kk + 1
  2307. for i := j + 1; i < n; i++ {
  2308. x[i] -= xj * cmplx.Conj(ap[k])
  2309. k++
  2310. }
  2311. kk += n - j
  2312. }
  2313. } else {
  2314. jx := kx
  2315. for j := 0; j < n; j++ {
  2316. if diag == blas.NonUnit {
  2317. x[jx] /= cmplx.Conj(ap[kk])
  2318. }
  2319. xj := x[jx]
  2320. ix := jx + incX
  2321. k := kk + 1
  2322. for i := j + 1; i < n; i++ {
  2323. x[ix] -= xj * cmplx.Conj(ap[k])
  2324. ix += incX
  2325. k++
  2326. }
  2327. jx += incX
  2328. kk += n - j
  2329. }
  2330. }
  2331. } else {
  2332. kk := n*(n+1)/2 - n
  2333. if incX == 1 {
  2334. for j := n - 1; j >= 0; j-- {
  2335. if diag == blas.NonUnit {
  2336. x[j] /= cmplx.Conj(ap[kk+j])
  2337. }
  2338. xj := x[j]
  2339. for i := 0; i < j; i++ {
  2340. x[i] -= xj * cmplx.Conj(ap[kk+i])
  2341. }
  2342. kk -= j
  2343. }
  2344. } else {
  2345. jx := kx + (n-1)*incX
  2346. for j := n - 1; j >= 0; j-- {
  2347. if diag == blas.NonUnit {
  2348. x[jx] /= cmplx.Conj(ap[kk+j])
  2349. }
  2350. xj := x[jx]
  2351. ix := kx
  2352. for i := 0; i < j; i++ {
  2353. x[ix] -= xj * cmplx.Conj(ap[kk+i])
  2354. ix += incX
  2355. }
  2356. jx -= incX
  2357. kk -= j
  2358. }
  2359. }
  2360. }
  2361. }
  2362. // Ztrmv performs one of the matrix-vector operations
  2363. // x = A * x if trans = blas.NoTrans
  2364. // x = Aᵀ * x if trans = blas.Trans
  2365. // x = Aᴴ * x if trans = blas.ConjTrans
  2366. // where x is a vector, and A is an n×n triangular matrix.
  2367. func (Implementation) Ztrmv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, a []complex128, lda int, x []complex128, incX int) {
  2368. switch trans {
  2369. default:
  2370. panic(badTranspose)
  2371. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  2372. }
  2373. switch uplo {
  2374. default:
  2375. panic(badUplo)
  2376. case blas.Upper, blas.Lower:
  2377. }
  2378. switch diag {
  2379. default:
  2380. panic(badDiag)
  2381. case blas.NonUnit, blas.Unit:
  2382. }
  2383. if n < 0 {
  2384. panic(nLT0)
  2385. }
  2386. if lda < max(1, n) {
  2387. panic(badLdA)
  2388. }
  2389. if incX == 0 {
  2390. panic(zeroIncX)
  2391. }
  2392. // Quick return if possible.
  2393. if n == 0 {
  2394. return
  2395. }
  2396. // For zero matrix size the following slice length checks are trivially satisfied.
  2397. if len(a) < lda*(n-1)+n {
  2398. panic(shortA)
  2399. }
  2400. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  2401. panic(shortX)
  2402. }
  2403. // Set up start index in X.
  2404. var kx int
  2405. if incX < 0 {
  2406. kx = (1 - n) * incX
  2407. }
  2408. // The elements of A are accessed sequentially with one pass through A.
  2409. if trans == blas.NoTrans {
  2410. // Form x = A*x.
  2411. if uplo == blas.Upper {
  2412. if incX == 1 {
  2413. for i := 0; i < n; i++ {
  2414. if diag == blas.NonUnit {
  2415. x[i] *= a[i*lda+i]
  2416. }
  2417. if n-i-1 > 0 {
  2418. x[i] += c128.DotuUnitary(a[i*lda+i+1:i*lda+n], x[i+1:n])
  2419. }
  2420. }
  2421. } else {
  2422. ix := kx
  2423. for i := 0; i < n; i++ {
  2424. if diag == blas.NonUnit {
  2425. x[ix] *= a[i*lda+i]
  2426. }
  2427. if n-i-1 > 0 {
  2428. x[ix] += c128.DotuInc(a[i*lda+i+1:i*lda+n], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
  2429. }
  2430. ix += incX
  2431. }
  2432. }
  2433. } else {
  2434. if incX == 1 {
  2435. for i := n - 1; i >= 0; i-- {
  2436. if diag == blas.NonUnit {
  2437. x[i] *= a[i*lda+i]
  2438. }
  2439. if i > 0 {
  2440. x[i] += c128.DotuUnitary(a[i*lda:i*lda+i], x[:i])
  2441. }
  2442. }
  2443. } else {
  2444. ix := kx + (n-1)*incX
  2445. for i := n - 1; i >= 0; i-- {
  2446. if diag == blas.NonUnit {
  2447. x[ix] *= a[i*lda+i]
  2448. }
  2449. if i > 0 {
  2450. x[ix] += c128.DotuInc(a[i*lda:i*lda+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
  2451. }
  2452. ix -= incX
  2453. }
  2454. }
  2455. }
  2456. return
  2457. }
  2458. if trans == blas.Trans {
  2459. // Form x = Aᵀ*x.
  2460. if uplo == blas.Upper {
  2461. if incX == 1 {
  2462. for i := n - 1; i >= 0; i-- {
  2463. xi := x[i]
  2464. if diag == blas.NonUnit {
  2465. x[i] *= a[i*lda+i]
  2466. }
  2467. if n-i-1 > 0 {
  2468. c128.AxpyUnitary(xi, a[i*lda+i+1:i*lda+n], x[i+1:n])
  2469. }
  2470. }
  2471. } else {
  2472. ix := kx + (n-1)*incX
  2473. for i := n - 1; i >= 0; i-- {
  2474. xi := x[ix]
  2475. if diag == blas.NonUnit {
  2476. x[ix] *= a[i*lda+i]
  2477. }
  2478. if n-i-1 > 0 {
  2479. c128.AxpyInc(xi, a[i*lda+i+1:i*lda+n], x, uintptr(n-i-1), 1, uintptr(incX), 0, uintptr(ix+incX))
  2480. }
  2481. ix -= incX
  2482. }
  2483. }
  2484. } else {
  2485. if incX == 1 {
  2486. for i := 0; i < n; i++ {
  2487. if i > 0 {
  2488. c128.AxpyUnitary(x[i], a[i*lda:i*lda+i], x[:i])
  2489. }
  2490. if diag == blas.NonUnit {
  2491. x[i] *= a[i*lda+i]
  2492. }
  2493. }
  2494. } else {
  2495. ix := kx
  2496. for i := 0; i < n; i++ {
  2497. if i > 0 {
  2498. c128.AxpyInc(x[ix], a[i*lda:i*lda+i], x, uintptr(i), 1, uintptr(incX), 0, uintptr(kx))
  2499. }
  2500. if diag == blas.NonUnit {
  2501. x[ix] *= a[i*lda+i]
  2502. }
  2503. ix += incX
  2504. }
  2505. }
  2506. }
  2507. return
  2508. }
  2509. // Form x = Aᴴ*x.
  2510. if uplo == blas.Upper {
  2511. if incX == 1 {
  2512. for i := n - 1; i >= 0; i-- {
  2513. xi := x[i]
  2514. if diag == blas.NonUnit {
  2515. x[i] *= cmplx.Conj(a[i*lda+i])
  2516. }
  2517. for j := i + 1; j < n; j++ {
  2518. x[j] += xi * cmplx.Conj(a[i*lda+j])
  2519. }
  2520. }
  2521. } else {
  2522. ix := kx + (n-1)*incX
  2523. for i := n - 1; i >= 0; i-- {
  2524. xi := x[ix]
  2525. if diag == blas.NonUnit {
  2526. x[ix] *= cmplx.Conj(a[i*lda+i])
  2527. }
  2528. jx := ix + incX
  2529. for j := i + 1; j < n; j++ {
  2530. x[jx] += xi * cmplx.Conj(a[i*lda+j])
  2531. jx += incX
  2532. }
  2533. ix -= incX
  2534. }
  2535. }
  2536. } else {
  2537. if incX == 1 {
  2538. for i := 0; i < n; i++ {
  2539. for j := 0; j < i; j++ {
  2540. x[j] += x[i] * cmplx.Conj(a[i*lda+j])
  2541. }
  2542. if diag == blas.NonUnit {
  2543. x[i] *= cmplx.Conj(a[i*lda+i])
  2544. }
  2545. }
  2546. } else {
  2547. ix := kx
  2548. for i := 0; i < n; i++ {
  2549. jx := kx
  2550. for j := 0; j < i; j++ {
  2551. x[jx] += x[ix] * cmplx.Conj(a[i*lda+j])
  2552. jx += incX
  2553. }
  2554. if diag == blas.NonUnit {
  2555. x[ix] *= cmplx.Conj(a[i*lda+i])
  2556. }
  2557. ix += incX
  2558. }
  2559. }
  2560. }
  2561. }
  2562. // Ztrsv solves one of the systems of equations
  2563. // A * x = b if trans == blas.NoTrans
  2564. // Aᵀ * x = b if trans == blas.Trans
  2565. // Aᴴ * x = b if trans == blas.ConjTrans
  2566. // where b and x are n element vectors and A is an n×n triangular matrix.
  2567. //
  2568. // On entry, x contains the values of b, and the solution is
  2569. // stored in-place into x.
  2570. //
  2571. // No test for singularity or near-singularity is included in this
  2572. // routine. Such tests must be performed before calling this routine.
  2573. func (Implementation) Ztrsv(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n int, a []complex128, lda int, x []complex128, incX int) {
  2574. switch trans {
  2575. default:
  2576. panic(badTranspose)
  2577. case blas.NoTrans, blas.Trans, blas.ConjTrans:
  2578. }
  2579. switch uplo {
  2580. default:
  2581. panic(badUplo)
  2582. case blas.Upper, blas.Lower:
  2583. }
  2584. switch diag {
  2585. default:
  2586. panic(badDiag)
  2587. case blas.NonUnit, blas.Unit:
  2588. }
  2589. if n < 0 {
  2590. panic(nLT0)
  2591. }
  2592. if lda < max(1, n) {
  2593. panic(badLdA)
  2594. }
  2595. if incX == 0 {
  2596. panic(zeroIncX)
  2597. }
  2598. // Quick return if possible.
  2599. if n == 0 {
  2600. return
  2601. }
  2602. // For zero matrix size the following slice length checks are trivially satisfied.
  2603. if len(a) < lda*(n-1)+n {
  2604. panic(shortA)
  2605. }
  2606. if (incX > 0 && len(x) <= (n-1)*incX) || (incX < 0 && len(x) <= (1-n)*incX) {
  2607. panic(shortX)
  2608. }
  2609. // Set up start index in X.
  2610. var kx int
  2611. if incX < 0 {
  2612. kx = (1 - n) * incX
  2613. }
  2614. // The elements of A are accessed sequentially with one pass through A.
  2615. if trans == blas.NoTrans {
  2616. // Form x = inv(A)*x.
  2617. if uplo == blas.Upper {
  2618. if incX == 1 {
  2619. for i := n - 1; i >= 0; i-- {
  2620. aii := a[i*lda+i]
  2621. if n-i-1 > 0 {
  2622. x[i] -= c128.DotuUnitary(x[i+1:n], a[i*lda+i+1:i*lda+n])
  2623. }
  2624. if diag == blas.NonUnit {
  2625. x[i] /= aii
  2626. }
  2627. }
  2628. } else {
  2629. ix := kx + (n-1)*incX
  2630. for i := n - 1; i >= 0; i-- {
  2631. aii := a[i*lda+i]
  2632. if n-i-1 > 0 {
  2633. x[ix] -= c128.DotuInc(x, a[i*lda+i+1:i*lda+n], uintptr(n-i-1), uintptr(incX), 1, uintptr(ix+incX), 0)
  2634. }
  2635. if diag == blas.NonUnit {
  2636. x[ix] /= aii
  2637. }
  2638. ix -= incX
  2639. }
  2640. }
  2641. } else {
  2642. if incX == 1 {
  2643. for i := 0; i < n; i++ {
  2644. if i > 0 {
  2645. x[i] -= c128.DotuUnitary(x[:i], a[i*lda:i*lda+i])
  2646. }
  2647. if diag == blas.NonUnit {
  2648. x[i] /= a[i*lda+i]
  2649. }
  2650. }
  2651. } else {
  2652. ix := kx
  2653. for i := 0; i < n; i++ {
  2654. if i > 0 {
  2655. x[ix] -= c128.DotuInc(x, a[i*lda:i*lda+i], uintptr(i), uintptr(incX), 1, uintptr(kx), 0)
  2656. }
  2657. if diag == blas.NonUnit {
  2658. x[ix] /= a[i*lda+i]
  2659. }
  2660. ix += incX
  2661. }
  2662. }
  2663. }
  2664. return
  2665. }
  2666. if trans == blas.Trans {
  2667. // Form x = inv(Aᵀ)*x.
  2668. if uplo == blas.Upper {
  2669. if incX == 1 {
  2670. for j := 0; j < n; j++ {
  2671. if diag == blas.NonUnit {
  2672. x[j] /= a[j*lda+j]
  2673. }
  2674. if n-j-1 > 0 {
  2675. c128.AxpyUnitary(-x[j], a[j*lda+j+1:j*lda+n], x[j+1:n])
  2676. }
  2677. }
  2678. } else {
  2679. jx := kx
  2680. for j := 0; j < n; j++ {
  2681. if diag == blas.NonUnit {
  2682. x[jx] /= a[j*lda+j]
  2683. }
  2684. if n-j-1 > 0 {
  2685. c128.AxpyInc(-x[jx], a[j*lda+j+1:j*lda+n], x, uintptr(n-j-1), 1, uintptr(incX), 0, uintptr(jx+incX))
  2686. }
  2687. jx += incX
  2688. }
  2689. }
  2690. } else {
  2691. if incX == 1 {
  2692. for j := n - 1; j >= 0; j-- {
  2693. if diag == blas.NonUnit {
  2694. x[j] /= a[j*lda+j]
  2695. }
  2696. xj := x[j]
  2697. if j > 0 {
  2698. c128.AxpyUnitary(-xj, a[j*lda:j*lda+j], x[:j])
  2699. }
  2700. }
  2701. } else {
  2702. jx := kx + (n-1)*incX
  2703. for j := n - 1; j >= 0; j-- {
  2704. if diag == blas.NonUnit {
  2705. x[jx] /= a[j*lda+j]
  2706. }
  2707. if j > 0 {
  2708. c128.AxpyInc(-x[jx], a[j*lda:j*lda+j], x, uintptr(j), 1, uintptr(incX), 0, uintptr(kx))
  2709. }
  2710. jx -= incX
  2711. }
  2712. }
  2713. }
  2714. return
  2715. }
  2716. // Form x = inv(Aᴴ)*x.
  2717. if uplo == blas.Upper {
  2718. if incX == 1 {
  2719. for j := 0; j < n; j++ {
  2720. if diag == blas.NonUnit {
  2721. x[j] /= cmplx.Conj(a[j*lda+j])
  2722. }
  2723. xj := x[j]
  2724. for i := j + 1; i < n; i++ {
  2725. x[i] -= xj * cmplx.Conj(a[j*lda+i])
  2726. }
  2727. }
  2728. } else {
  2729. jx := kx
  2730. for j := 0; j < n; j++ {
  2731. if diag == blas.NonUnit {
  2732. x[jx] /= cmplx.Conj(a[j*lda+j])
  2733. }
  2734. xj := x[jx]
  2735. ix := jx + incX
  2736. for i := j + 1; i < n; i++ {
  2737. x[ix] -= xj * cmplx.Conj(a[j*lda+i])
  2738. ix += incX
  2739. }
  2740. jx += incX
  2741. }
  2742. }
  2743. } else {
  2744. if incX == 1 {
  2745. for j := n - 1; j >= 0; j-- {
  2746. if diag == blas.NonUnit {
  2747. x[j] /= cmplx.Conj(a[j*lda+j])
  2748. }
  2749. xj := x[j]
  2750. for i := 0; i < j; i++ {
  2751. x[i] -= xj * cmplx.Conj(a[j*lda+i])
  2752. }
  2753. }
  2754. } else {
  2755. jx := kx + (n-1)*incX
  2756. for j := n - 1; j >= 0; j-- {
  2757. if diag == blas.NonUnit {
  2758. x[jx] /= cmplx.Conj(a[j*lda+j])
  2759. }
  2760. xj := x[jx]
  2761. ix := kx
  2762. for i := 0; i < j; i++ {
  2763. x[ix] -= xj * cmplx.Conj(a[j*lda+i])
  2764. ix += incX
  2765. }
  2766. jx -= incX
  2767. }
  2768. }
  2769. }
  2770. }