legacy_message.go 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502
  1. // Copyright 2018 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package impl
  5. import (
  6. "fmt"
  7. "reflect"
  8. "strings"
  9. "sync"
  10. "google.golang.org/protobuf/internal/descopts"
  11. ptag "google.golang.org/protobuf/internal/encoding/tag"
  12. "google.golang.org/protobuf/internal/errors"
  13. "google.golang.org/protobuf/internal/filedesc"
  14. "google.golang.org/protobuf/internal/strs"
  15. "google.golang.org/protobuf/reflect/protoreflect"
  16. pref "google.golang.org/protobuf/reflect/protoreflect"
  17. "google.golang.org/protobuf/runtime/protoiface"
  18. piface "google.golang.org/protobuf/runtime/protoiface"
  19. )
  20. // legacyWrapMessage wraps v as a protoreflect.Message,
  21. // where v must be a *struct kind and not implement the v2 API already.
  22. func legacyWrapMessage(v reflect.Value) pref.Message {
  23. typ := v.Type()
  24. if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct {
  25. return aberrantMessage{v: v}
  26. }
  27. mt := legacyLoadMessageInfo(typ, "")
  28. return mt.MessageOf(v.Interface())
  29. }
  30. var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
  31. // legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
  32. // where t must be a *struct kind and not implement the v2 API already.
  33. // The provided name is used if it cannot be determined from the message.
  34. func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
  35. // Fast-path: check if a MessageInfo is cached for this concrete type.
  36. if mt, ok := legacyMessageTypeCache.Load(t); ok {
  37. return mt.(*MessageInfo)
  38. }
  39. // Slow-path: derive message descriptor and initialize MessageInfo.
  40. mi := &MessageInfo{
  41. Desc: legacyLoadMessageDesc(t, name),
  42. GoReflectType: t,
  43. }
  44. v := reflect.Zero(t).Interface()
  45. if _, ok := v.(legacyMarshaler); ok {
  46. mi.methods.Marshal = legacyMarshal
  47. // We have no way to tell whether the type's Marshal method
  48. // supports deterministic serialization or not, but this
  49. // preserves the v1 implementation's behavior of always
  50. // calling Marshal methods when present.
  51. mi.methods.Flags |= piface.SupportMarshalDeterministic
  52. }
  53. if _, ok := v.(legacyUnmarshaler); ok {
  54. mi.methods.Unmarshal = legacyUnmarshal
  55. }
  56. if _, ok := v.(legacyMerger); ok {
  57. mi.methods.Merge = legacyMerge
  58. }
  59. if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
  60. return mi.(*MessageInfo)
  61. }
  62. return mi
  63. }
  64. var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
  65. // LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
  66. // which must be a *struct kind and not implement the v2 API already.
  67. //
  68. // This is exported for testing purposes.
  69. func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
  70. return legacyLoadMessageDesc(t, "")
  71. }
  72. func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  73. // Fast-path: check if a MessageDescriptor is cached for this concrete type.
  74. if mi, ok := legacyMessageDescCache.Load(t); ok {
  75. return mi.(pref.MessageDescriptor)
  76. }
  77. // Slow-path: initialize MessageDescriptor from the raw descriptor.
  78. mv := reflect.Zero(t).Interface()
  79. if _, ok := mv.(pref.ProtoMessage); ok {
  80. panic(fmt.Sprintf("%v already implements proto.Message", t))
  81. }
  82. mdV1, ok := mv.(messageV1)
  83. if !ok {
  84. return aberrantLoadMessageDesc(t, name)
  85. }
  86. // If this is a dynamic message type where there isn't a 1-1 mapping between
  87. // Go and protobuf types, calling the Descriptor method on the zero value of
  88. // the message type isn't likely to work. If it panics, swallow the panic and
  89. // continue as if the Descriptor method wasn't present.
  90. b, idxs := func() ([]byte, []int) {
  91. defer func() {
  92. recover()
  93. }()
  94. return mdV1.Descriptor()
  95. }()
  96. if b == nil {
  97. return aberrantLoadMessageDesc(t, name)
  98. }
  99. // If the Go type has no fields, then this might be a proto3 empty message
  100. // from before the size cache was added. If there are any fields, check to
  101. // see that at least one of them looks like something we generated.
  102. if nfield := t.Elem().NumField(); nfield > 0 {
  103. hasProtoField := false
  104. for i := 0; i < nfield; i++ {
  105. f := t.Elem().Field(i)
  106. if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
  107. hasProtoField = true
  108. break
  109. }
  110. }
  111. if !hasProtoField {
  112. return aberrantLoadMessageDesc(t, name)
  113. }
  114. }
  115. md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
  116. for _, i := range idxs[1:] {
  117. md = md.Messages().Get(i)
  118. }
  119. if name != "" && md.FullName() != name {
  120. panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
  121. }
  122. if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
  123. return md.(protoreflect.MessageDescriptor)
  124. }
  125. return md
  126. }
  127. var (
  128. aberrantMessageDescLock sync.Mutex
  129. aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
  130. )
  131. // aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
  132. // which must not implement protoreflect.ProtoMessage or messageV1.
  133. //
  134. // This is a best-effort derivation of the message descriptor using the protobuf
  135. // tags on the struct fields.
  136. func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  137. aberrantMessageDescLock.Lock()
  138. defer aberrantMessageDescLock.Unlock()
  139. if aberrantMessageDescCache == nil {
  140. aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
  141. }
  142. return aberrantLoadMessageDescReentrant(t, name)
  143. }
  144. func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  145. // Fast-path: check if an MessageDescriptor is cached for this concrete type.
  146. if md, ok := aberrantMessageDescCache[t]; ok {
  147. return md
  148. }
  149. // Slow-path: construct a descriptor from the Go struct type (best-effort).
  150. // Cache the MessageDescriptor early on so that we can resolve internal
  151. // cyclic references.
  152. md := &filedesc.Message{L2: new(filedesc.MessageL2)}
  153. md.L0.FullName = aberrantDeriveMessageName(t, name)
  154. md.L0.ParentFile = filedesc.SurrogateProto2
  155. aberrantMessageDescCache[t] = md
  156. if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
  157. return md
  158. }
  159. // Try to determine if the message is using proto3 by checking scalars.
  160. for i := 0; i < t.Elem().NumField(); i++ {
  161. f := t.Elem().Field(i)
  162. if tag := f.Tag.Get("protobuf"); tag != "" {
  163. switch f.Type.Kind() {
  164. case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
  165. md.L0.ParentFile = filedesc.SurrogateProto3
  166. }
  167. for _, s := range strings.Split(tag, ",") {
  168. if s == "proto3" {
  169. md.L0.ParentFile = filedesc.SurrogateProto3
  170. }
  171. }
  172. }
  173. }
  174. // Obtain a list of oneof wrapper types.
  175. var oneofWrappers []reflect.Type
  176. for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
  177. if fn, ok := t.MethodByName(method); ok {
  178. for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
  179. if vs, ok := v.Interface().([]interface{}); ok {
  180. for _, v := range vs {
  181. oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
  182. }
  183. }
  184. }
  185. }
  186. }
  187. // Obtain a list of the extension ranges.
  188. if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
  189. vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
  190. for i := 0; i < vs.Len(); i++ {
  191. v := vs.Index(i)
  192. md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
  193. pref.FieldNumber(v.FieldByName("Start").Int()),
  194. pref.FieldNumber(v.FieldByName("End").Int() + 1),
  195. })
  196. md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
  197. }
  198. }
  199. // Derive the message fields by inspecting the struct fields.
  200. for i := 0; i < t.Elem().NumField(); i++ {
  201. f := t.Elem().Field(i)
  202. if tag := f.Tag.Get("protobuf"); tag != "" {
  203. tagKey := f.Tag.Get("protobuf_key")
  204. tagVal := f.Tag.Get("protobuf_val")
  205. aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
  206. }
  207. if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
  208. n := len(md.L2.Oneofs.List)
  209. md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
  210. od := &md.L2.Oneofs.List[n]
  211. od.L0.FullName = md.FullName().Append(pref.Name(tag))
  212. od.L0.ParentFile = md.L0.ParentFile
  213. od.L0.Parent = md
  214. od.L0.Index = n
  215. for _, t := range oneofWrappers {
  216. if t.Implements(f.Type) {
  217. f := t.Elem().Field(0)
  218. if tag := f.Tag.Get("protobuf"); tag != "" {
  219. aberrantAppendField(md, f.Type, tag, "", "")
  220. fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
  221. fd.L1.ContainingOneof = od
  222. od.L1.Fields.List = append(od.L1.Fields.List, fd)
  223. }
  224. }
  225. }
  226. }
  227. }
  228. return md
  229. }
  230. func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
  231. if name.IsValid() {
  232. return name
  233. }
  234. func() {
  235. defer func() { recover() }() // swallow possible nil panics
  236. if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
  237. name = pref.FullName(m.XXX_MessageName())
  238. }
  239. }()
  240. if name.IsValid() {
  241. return name
  242. }
  243. if t.Kind() == reflect.Ptr {
  244. t = t.Elem()
  245. }
  246. return AberrantDeriveFullName(t)
  247. }
  248. func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
  249. t := goType
  250. isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
  251. isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
  252. if isOptional || isRepeated {
  253. t = t.Elem()
  254. }
  255. fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
  256. // Append field descriptor to the message.
  257. n := len(md.L2.Fields.List)
  258. md.L2.Fields.List = append(md.L2.Fields.List, *fd)
  259. fd = &md.L2.Fields.List[n]
  260. fd.L0.FullName = md.FullName().Append(fd.Name())
  261. fd.L0.ParentFile = md.L0.ParentFile
  262. fd.L0.Parent = md
  263. fd.L0.Index = n
  264. if fd.L1.IsWeak || fd.L1.HasPacked {
  265. fd.L1.Options = func() pref.ProtoMessage {
  266. opts := descopts.Field.ProtoReflect().New()
  267. if fd.L1.IsWeak {
  268. opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
  269. }
  270. if fd.L1.HasPacked {
  271. opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
  272. }
  273. return opts.Interface()
  274. }
  275. }
  276. // Populate Enum and Message.
  277. if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
  278. switch v := reflect.Zero(t).Interface().(type) {
  279. case pref.Enum:
  280. fd.L1.Enum = v.Descriptor()
  281. default:
  282. fd.L1.Enum = LegacyLoadEnumDesc(t)
  283. }
  284. }
  285. if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
  286. switch v := reflect.Zero(t).Interface().(type) {
  287. case pref.ProtoMessage:
  288. fd.L1.Message = v.ProtoReflect().Descriptor()
  289. case messageV1:
  290. fd.L1.Message = LegacyLoadMessageDesc(t)
  291. default:
  292. if t.Kind() == reflect.Map {
  293. n := len(md.L1.Messages.List)
  294. md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
  295. md2 := &md.L1.Messages.List[n]
  296. md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
  297. md2.L0.ParentFile = md.L0.ParentFile
  298. md2.L0.Parent = md
  299. md2.L0.Index = n
  300. md2.L1.IsMapEntry = true
  301. md2.L2.Options = func() pref.ProtoMessage {
  302. opts := descopts.Message.ProtoReflect().New()
  303. opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
  304. return opts.Interface()
  305. }
  306. aberrantAppendField(md2, t.Key(), tagKey, "", "")
  307. aberrantAppendField(md2, t.Elem(), tagVal, "", "")
  308. fd.L1.Message = md2
  309. break
  310. }
  311. fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
  312. }
  313. }
  314. }
  315. type placeholderEnumValues struct {
  316. protoreflect.EnumValueDescriptors
  317. }
  318. func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
  319. return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
  320. }
  321. // legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
  322. type legacyMarshaler interface {
  323. Marshal() ([]byte, error)
  324. }
  325. // legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
  326. type legacyUnmarshaler interface {
  327. Unmarshal([]byte) error
  328. }
  329. // legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
  330. type legacyMerger interface {
  331. Merge(protoiface.MessageV1)
  332. }
  333. var legacyProtoMethods = &piface.Methods{
  334. Marshal: legacyMarshal,
  335. Unmarshal: legacyUnmarshal,
  336. Merge: legacyMerge,
  337. // We have no way to tell whether the type's Marshal method
  338. // supports deterministic serialization or not, but this
  339. // preserves the v1 implementation's behavior of always
  340. // calling Marshal methods when present.
  341. Flags: piface.SupportMarshalDeterministic,
  342. }
  343. func legacyMarshal(in piface.MarshalInput) (piface.MarshalOutput, error) {
  344. v := in.Message.(unwrapper).protoUnwrap()
  345. marshaler, ok := v.(legacyMarshaler)
  346. if !ok {
  347. return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
  348. }
  349. out, err := marshaler.Marshal()
  350. if in.Buf != nil {
  351. out = append(in.Buf, out...)
  352. }
  353. return piface.MarshalOutput{
  354. Buf: out,
  355. }, err
  356. }
  357. func legacyUnmarshal(in piface.UnmarshalInput) (piface.UnmarshalOutput, error) {
  358. v := in.Message.(unwrapper).protoUnwrap()
  359. unmarshaler, ok := v.(legacyUnmarshaler)
  360. if !ok {
  361. return piface.UnmarshalOutput{}, errors.New("%T does not implement Marshal", v)
  362. }
  363. return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
  364. }
  365. func legacyMerge(in piface.MergeInput) piface.MergeOutput {
  366. dstv := in.Destination.(unwrapper).protoUnwrap()
  367. merger, ok := dstv.(legacyMerger)
  368. if !ok {
  369. return piface.MergeOutput{}
  370. }
  371. merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
  372. return piface.MergeOutput{Flags: piface.MergeComplete}
  373. }
  374. // aberrantMessageType implements MessageType for all types other than pointer-to-struct.
  375. type aberrantMessageType struct {
  376. t reflect.Type
  377. }
  378. func (mt aberrantMessageType) New() pref.Message {
  379. return aberrantMessage{reflect.Zero(mt.t)}
  380. }
  381. func (mt aberrantMessageType) Zero() pref.Message {
  382. return aberrantMessage{reflect.Zero(mt.t)}
  383. }
  384. func (mt aberrantMessageType) GoType() reflect.Type {
  385. return mt.t
  386. }
  387. func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
  388. return LegacyLoadMessageDesc(mt.t)
  389. }
  390. // aberrantMessage implements Message for all types other than pointer-to-struct.
  391. //
  392. // When the underlying type implements legacyMarshaler or legacyUnmarshaler,
  393. // the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
  394. // not much that can be done with values of this type.
  395. type aberrantMessage struct {
  396. v reflect.Value
  397. }
  398. func (m aberrantMessage) ProtoReflect() pref.Message {
  399. return m
  400. }
  401. func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
  402. return LegacyLoadMessageDesc(m.v.Type())
  403. }
  404. func (m aberrantMessage) Type() pref.MessageType {
  405. return aberrantMessageType{m.v.Type()}
  406. }
  407. func (m aberrantMessage) New() pref.Message {
  408. return aberrantMessage{reflect.Zero(m.v.Type())}
  409. }
  410. func (m aberrantMessage) Interface() pref.ProtoMessage {
  411. return m
  412. }
  413. func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
  414. }
  415. func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
  416. panic("invalid field descriptor")
  417. }
  418. func (m aberrantMessage) Clear(pref.FieldDescriptor) {
  419. panic("invalid field descriptor")
  420. }
  421. func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value {
  422. panic("invalid field descriptor")
  423. }
  424. func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
  425. panic("invalid field descriptor")
  426. }
  427. func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
  428. panic("invalid field descriptor")
  429. }
  430. func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
  431. panic("invalid field descriptor")
  432. }
  433. func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
  434. panic("invalid oneof descriptor")
  435. }
  436. func (m aberrantMessage) GetUnknown() pref.RawFields {
  437. return nil
  438. }
  439. func (m aberrantMessage) SetUnknown(pref.RawFields) {
  440. // SetUnknown discards its input on messages which don't support unknown field storage.
  441. }
  442. func (m aberrantMessage) IsValid() bool {
  443. // An invalid message is a read-only, empty message. Since we don't know anything
  444. // about the alleged contents of this message, we can't say with confidence that
  445. // it is invalid in this sense. Therefore, report it as valid.
  446. return true
  447. }
  448. func (m aberrantMessage) ProtoMethods() *piface.Methods {
  449. return legacyProtoMethods
  450. }
  451. func (m aberrantMessage) protoUnwrap() interface{} {
  452. return m.v.Interface()
  453. }