123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269 |
- // Copyright ©2013 The Gonum Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- package mat
- import (
- "math"
- "gonum.org/v1/gonum/blas"
- "gonum.org/v1/gonum/blas/blas64"
- "gonum.org/v1/gonum/lapack"
- "gonum.org/v1/gonum/lapack/lapack64"
- )
- const badLQ = "mat: invalid LQ factorization"
- // LQ is a type for creating and using the LQ factorization of a matrix.
- type LQ struct {
- lq *Dense
- tau []float64
- cond float64
- }
- func (lq *LQ) updateCond(norm lapack.MatrixNorm) {
- // Since A = L*Q, and Q is orthogonal, we get for the condition number κ
- // κ(A) := |A| |A^-1| = |L*Q| |(L*Q)^-1| = |L| |Qᵀ * L^-1|
- // = |L| |L^-1| = κ(L),
- // where we used that fact that Q^-1 = Qᵀ. However, this assumes that
- // the matrix norm is invariant under orthogonal transformations which
- // is not the case for CondNorm. Hopefully the error is negligible: κ
- // is only a qualitative measure anyway.
- m := lq.lq.mat.Rows
- work := getFloats(3*m, false)
- iwork := getInts(m, false)
- l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
- v := lapack64.Trcon(norm, l.mat, work, iwork)
- lq.cond = 1 / v
- putFloats(work)
- putInts(iwork)
- }
- // Factorize computes the LQ factorization of an m×n matrix a where m <= n. The LQ
- // factorization always exists even if A is singular.
- //
- // The LQ decomposition is a factorization of the matrix A such that A = L * Q.
- // The matrix Q is an orthonormal n×n matrix, and L is an m×n lower triangular matrix.
- // L and Q can be extracted using the LTo and QTo methods.
- func (lq *LQ) Factorize(a Matrix) {
- lq.factorize(a, CondNorm)
- }
- func (lq *LQ) factorize(a Matrix, norm lapack.MatrixNorm) {
- m, n := a.Dims()
- if m > n {
- panic(ErrShape)
- }
- k := min(m, n)
- if lq.lq == nil {
- lq.lq = &Dense{}
- }
- lq.lq.CloneFrom(a)
- work := []float64{0}
- lq.tau = make([]float64, k)
- lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
- work = getFloats(int(work[0]), false)
- lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
- putFloats(work)
- lq.updateCond(norm)
- }
- // isValid returns whether the receiver contains a factorization.
- func (lq *LQ) isValid() bool {
- return lq.lq != nil && !lq.lq.IsEmpty()
- }
- // Cond returns the condition number for the factorized matrix.
- // Cond will panic if the receiver does not contain a factorization.
- func (lq *LQ) Cond() float64 {
- if !lq.isValid() {
- panic(badLQ)
- }
- return lq.cond
- }
- // TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
- // and upper triangular matrices.
- // LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
- //
- // If dst is empty, LTo will resize dst to be r×c. When dst is
- // non-empty, LTo will panic if dst is not r×c. LTo will also panic
- // if the receiver does not contain a successful factorization.
- func (lq *LQ) LTo(dst *Dense) {
- if !lq.isValid() {
- panic(badLQ)
- }
- r, c := lq.lq.Dims()
- if dst.IsEmpty() {
- dst.ReuseAs(r, c)
- } else {
- r2, c2 := dst.Dims()
- if r != r2 || c != c2 {
- panic(ErrShape)
- }
- }
- // Disguise the LQ as a lower triangular.
- t := &TriDense{
- mat: blas64.Triangular{
- N: r,
- Stride: lq.lq.mat.Stride,
- Data: lq.lq.mat.Data,
- Uplo: blas.Lower,
- Diag: blas.NonUnit,
- },
- cap: lq.lq.capCols,
- }
- dst.Copy(t)
- if r == c {
- return
- }
- // Zero right of the triangular.
- for i := 0; i < r; i++ {
- zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
- }
- }
- // QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
- //
- // If dst is empty, QTo will resize dst to be c×c. When dst is
- // non-empty, QTo will panic if dst is not c×c. QTo will also panic
- // if the receiver does not contain a successful factorization.
- func (lq *LQ) QTo(dst *Dense) {
- if !lq.isValid() {
- panic(badLQ)
- }
- _, c := lq.lq.Dims()
- if dst.IsEmpty() {
- dst.ReuseAs(c, c)
- } else {
- r2, c2 := dst.Dims()
- if c != r2 || c != c2 {
- panic(ErrShape)
- }
- dst.Zero()
- }
- q := dst.mat
- // Set Q = I.
- ldq := q.Stride
- for i := 0; i < c; i++ {
- q.Data[i*ldq+i] = 1
- }
- // Construct Q from the elementary reflectors.
- work := []float64{0}
- lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, -1)
- work = getFloats(int(work[0]), false)
- lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, q, work, len(work))
- putFloats(work)
- }
- // SolveTo finds a minimum-norm solution to a system of linear equations defined
- // by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
- // form. If A is singular or near-singular a Condition error is returned.
- // See the documentation for Condition for more information.
- //
- // The minimization problem solved depends on the input parameters.
- // If trans == false, find the minimum norm solution of A * X = B.
- // If trans == true, find X such that ||A*X - B||_2 is minimized.
- // The solution matrix, X, is stored in place into dst.
- // SolveTo will panic if the receiver does not contain a factorization.
- func (lq *LQ) SolveTo(dst *Dense, trans bool, b Matrix) error {
- if !lq.isValid() {
- panic(badLQ)
- }
- r, c := lq.lq.Dims()
- br, bc := b.Dims()
- // The LQ solve algorithm stores the result in-place into the right hand side.
- // The storage for the answer must be large enough to hold both b and x.
- // However, this method's receiver must be the size of x. Copy b, and then
- // copy the result into x at the end.
- if trans {
- if c != br {
- panic(ErrShape)
- }
- dst.reuseAsNonZeroed(r, bc)
- } else {
- if r != br {
- panic(ErrShape)
- }
- dst.reuseAsNonZeroed(c, bc)
- }
- // Do not need to worry about overlap between x and b because w has its own
- // independent storage.
- w := getWorkspace(max(r, c), bc, false)
- w.Copy(b)
- t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
- if trans {
- work := []float64{0}
- lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, -1)
- work = getFloats(int(work[0]), false)
- lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, w.mat, work, len(work))
- putFloats(work)
- ok := lapack64.Trtrs(blas.Trans, t, w.mat)
- if !ok {
- return Condition(math.Inf(1))
- }
- } else {
- ok := lapack64.Trtrs(blas.NoTrans, t, w.mat)
- if !ok {
- return Condition(math.Inf(1))
- }
- for i := r; i < c; i++ {
- zero(w.mat.Data[i*w.mat.Stride : i*w.mat.Stride+bc])
- }
- work := []float64{0}
- lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, -1)
- work = getFloats(int(work[0]), false)
- lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, w.mat, work, len(work))
- putFloats(work)
- }
- // x was set above to be the correct size for the result.
- dst.Copy(w)
- putWorkspace(w)
- if lq.cond > ConditionTolerance {
- return Condition(lq.cond)
- }
- return nil
- }
- // SolveVecTo finds a minimum-norm solution to a system of linear equations.
- // See LQ.SolveTo for the full documentation.
- // SolveToVec will panic if the receiver does not contain a factorization.
- func (lq *LQ) SolveVecTo(dst *VecDense, trans bool, b Vector) error {
- if !lq.isValid() {
- panic(badLQ)
- }
- r, c := lq.lq.Dims()
- if _, bc := b.Dims(); bc != 1 {
- panic(ErrShape)
- }
- // The Solve implementation is non-trivial, so rather than duplicate the code,
- // instead recast the VecDenses as Dense and call the matrix code.
- bm := Matrix(b)
- if rv, ok := b.(RawVectorer); ok {
- bmat := rv.RawVector()
- if dst != b {
- dst.checkOverlap(bmat)
- }
- b := VecDense{mat: bmat}
- bm = b.asDense()
- }
- if trans {
- dst.reuseAsNonZeroed(r)
- } else {
- dst.reuseAsNonZeroed(c)
- }
- return lq.SolveTo(dst.asDense(), trans, bm)
- }
|